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Introduction

Summary

e To adapt to waterlogging in soil, some gramineous plants, such as maize (Zea
mays), form lysigenous aerenchyma in the root cortex. Ethylene, which is accumu-
lated during waterlogging, promotes aerenchyma formation. However, the molec-
ular mechanism of aerenchyma formation is not understood.

e The aim of this study was to identify aerenchyma formation-associated genes
expressed in maize roots as a basis for understanding the molecular mechanism of
aerenchyma formation. Maize plants were grown under waterlogged conditions,
with or without pretreatment with an ethylene perception inhibitor 1-methylcyclo-
propene (1-MCP), or under aerobic conditions. Cortical cells were isolated by laser
microdissection and their mRNA levels were examined with a microarray.

e The microarray analysis revealed 575 genes in the cortical cells, whose expres-
sion was either up-regulated or down-regulated under waterlogged conditions
and whose induction or repression was suppressed by pretreatment with 1-MCP.

o The differentially expressed genes included genes related to the generation or
scavenging of reactive oxygen species, Ca®* signaling, and cell wall loosening and
degradation. The results of this study should lead to a better understanding of the
mechanism of root lysigenous aerenchyma formation.

2005). Schizogenous aerenchyma is formed by the creation
of gas spaces between cells as a result of highly regulated cell

The acrenchyma is a specialized tissue consisting of longitu-
dinal gas spaces, which enables the internal movement of
gases (e.g. O,, CO,, ethylene and methane) in plant roots,
petioles and stems (Armstrong, 1979; Colmer, 2003). The
internal transport of oxygen via the acrenchyma from shoots
to roots is especially important for survival under water-
logged conditions. In general, aerenchyma can be classified
into two main types: schizogenous aerenchyma and lysigen-
ous aerenchyma (Jackson & Armstrong, 1999; Seago ez al.,
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separation and differential cell expansion, without cell death
taking place. Lysigenous aerenchyma is formed by the crea-
tion of gas spaces as a result of death and the subsequent
lysis of some cells (e.g. root cortical cells), and is observed in
many crops, such as barley, maize, rice and wheat (Jackson
& Armstrong, 1999; Evans, 2003).

Many wetland plant species (e.g. rice and Juncus effisus)
constitutively form lysigenous aerenchyma in roots under
well-drained soil conditions, and its formation is enhanced
on soil waterlogging. On the other hand, lysigenous aeren-
chyma in nonwetland plants, including maize, is not
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normally formed under well-drained soil conditions, but is
induced by waterlogging, hypoxia, mechanical impedance
and even under aerobic conditions by nutrient deficiency
(Drew et al., 1979; He et al., 1992, 1996a). Because aeren-
chyma formation can be induced in maize roots by external
stimuli, maize has often been used as a model plant for
understanding the mechanism of aerenchyma formation.
Ethylene has been implicated in lysigenous aerenchyma
formation in maize and rice (Drew ez al., 1979; Jackson &
Armstrong, 1999; Shiono e al., 2008). In maize roots, eth-
ylene biosynthesis is stimulated by enhancing the activities
of two ethylene biosynthetic enzymes (l-aminocyclopro-
pene-1-carboxylic acid (ACC) synthase and ACC oxidase)
under hypoxic conditions (He ez al., 1996a). Indeed, hyp-
oxic treatment increases the production of ethylene in maize
roots by several fold within 3 h (Geisler-Lee ez al., 2010).
The treatment of maize roots with inhibitors of ethylene
action (e.g. silver ions) or ethylene biosynthesis (e.g. amino-
ethoxyvinylglycine (AVG), aminooxyacetic acid (AOA) and
cobalt chloride) effectively blocks aerenchyma formation
under hypoxic conditions (Drew ez al, 1981; Konings,
1982; Jackson ez al., 1985). Moreover, aerenchyma can be
induced by treatment with ethylene, even under aerobic
conditions (Jackson et al, 1985).
indicate that ethylene works as a trigger for inducible
aerenchyma formation in maize roots. Ethylene-responsive

These observations

aerenchyma formation is affected by chemical inhibitors or
stimulators of programmed cell death and other signaling
pathways (He ez al, 1996b). These analyses suggest that
heterotrimeric G-protein-, phospholipase C (PLC)-, inositol
1,4,5-trisphosphate (IP3)- and calcium-dependent signaling
pathways are involved in the process of lysigenous aeren-
chyma formation in maize roots (He et al, 1996b; Drew
et al., 2000).

In the late stage of lysigenous aerenchyma formation, the
cell wall is degraded enzymatically. Initially, the location of
esterified pectin and de-esterified pectin in the cell wall of
the maize cortex is changed during cell death (Gunawardena
et al., 2001), and subsequently the cell wall is degraded by
the combined action of pectolytic, xylanolytic and celluloso-
lytic enzymes (Jackson & Armstrong, 1999). Indeed, the
activities of cellulase (CEL), xylanase and pectinase, all of
which are involved in the loosening or degradation of the cell
wall, are enhanced in maize roots under waterlogged
conditions (Jackson & Armstrong, 1999). On the other hand,
the expression of genes encoding expansin, which promotes
cell wall extensibility by the breaking of hydrogen bonds
between hemicellulose and cellulose, is induced by ethylene
(Rose ¢t al., 2000). A gene encoding xyloglucan endo-trans-
glycosylase (XET) is up-regulated in maize roots after 12 h of
flooding, and induction is inhibited by treatment with an
ethylene biosynthesis inhibitor (Saab & Sachs, 1996).

On the basis of these results, Evans (2003) proposed that
selective cell death in the maize root cortex occurs in five
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stages: (1) perception of hypoxia and initiation of ethylene
biosynthesis; (2) perception of an ethylene signal by cells of
the mid-cortex; (3) initiation of cell death with loss of ions
to the surroundings, plasma membrane invagination and
the formation of small vesicles; (4) chromatin condensation,
increased activities of cell wall hydrolytic enzymes and the
surrounding of organelles by membranes; (5) cell wall
degradation, cell lysis and absorption of cell contents and
water by the surrounding cells, thereby forming gas spaces
(i.e. acrenchyma).

So far, these results have mainly been obtained by mor-
phological, anatomical and pharmacological studies, and
thus the molecular mechanism of lysigenous aerenchyma
formation remains to be elucidated. To better understand
the mechanism of lysigenous aerenchyma formation, it is
necessary to identify the genes involved and to determine
how they are regulated. In this study, we grew maize under
aerobic or waterlogged conditions, with or without pretreat-
ment with an inhibitor of ethylene perception. Because
aerenchyma formation occurs specifically in root cortical
cells, we used laser microdissection (LM; Nakazono ez 4l.,
2003; Nelson et al., 2006) to isolate these cells, and then
examined their mRNA levels with a microarray and semi-
quantitative reverse transcription-polymerase chain reaction
(RT-PCR). As a result, we identified genes that were up-
regulated or down-regulated in root cortical cells during
aerenchyma formation, and discuss their possible roles.

Materials and Methods

Plant material and growth conditions

Maize (Zea mays L. inbred line B73) caryopses were placed
on moist chromatography paper (3MM CHR; Whatman,
Maidstone, Kent, UK), rolled up in the paper, placed in a
flask half shielded with aluminum foil and incubated in
constant light at 28°C as described by Nakazono et al.
(2003). Three-day-old acrobically grown seedlings were then
subjected to the following two experimental conditions.

Experiment 1: effects of waterlogged conditions on
aerenchyma formation in a primary root

After 3 d of growth, the underground part (i.e. roots) of
seedlings was submerged in distilled water to create water-
logged conditions. For an aerobic control, the chromato-
graphy paper was kept moist, but never submerged.

Experiment 2: effect of ethylene on aerenchyma
formation in a primary root under waterlogged
conditions

Before waterlogging, 2.5-d-old seedlings were pretreated
with 1 ppm of a gaseous ethylene perception inhibitor,
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I-methylcyclopropene (1-MCP), for 12h in a tghdy
closed container. For a control, the same treatment was used

but without 1-MCP.

Anatomical observations

Three-day-old aerobically grown seedlings were further
grown for 24 h under waterlogged conditions with or with-
out pretreatment with 1-MCP, or under aerobic conditions.
We isolated segments of primary roots at 1.5-2.0 cm from
the root—shoot junction for the observation of aerenchyma
formation. Transverse sections of primary roots were used to
determine the extent of aecrenchyma formation (defined as
the area of the acrenchyma per area of the whole root on the
section). Each section was photographed using a light micro-
scope (ECLIPSE E600; Nikon, Tokyo, Japan) with a CCD
camera (DIGITAL SIGHT DS-L1; Nikon). Areas were mea-
sured with Image J software (Ver. 1.39u; National Institutes
of Health, Bethesda, MD, USA). Three independent

experiments were conducted, each using three primary roots.

Laser microdissection (LM)

The basal parts of the primary roots (1.5-2.0 cm from the
root-shoot junction) were fixed in 75% ethanol : 25% ace-
tic acid; after dehydration in a graded ethanol series, the tis-
sues were embedded in paraffin and sectioned at a thickness
of 16 pm. Serial sections were placed onto PEN membrane
glass slides (Molecular Devices, Toronto, ON, Canada) for
LM as described by Takahashi ez /. (2010). To remove par-
affin, slides were immersed in 100% xylene for 5 min, and
then in 50% xylene and 50% ethanol for 5 min, and finally
in 100% ethanol for 5 min, followed by air drying at room
temperature. Cortical cells or stelar cells were collected from
the root tissue sections using a Veritas Laser Microdissection

System LCC1704 (Molecular Devices).

RNA extraction

Total RNA was extracted from the LM-isolated cortical cells
or stelar cells using a PicoPure™ RNA isolation kit (Molecular
Devices) according to the manufacturer’s instructions. The
extracted total RNA was quantified with a Quant-iT™
RiboGreen RNA reagent and kit (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. The
quality of total RNA was assessed using a RNA 6000 Pico kit
on an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA) as described by Takahashi ez a/. (2010).

Microarray experiment

Total RNAs (10 ng each) were labeled with a Quick
Amp Labeling Kit (Agilent Technologies) according to the
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manufacturer’s instructions. Aliquots of Cy5-labeled and
Cy3-labeled cRNA (750 ng each) were used for hybrid-
ization in a 4 X 44k Maize Gene Expression Microarray
(Agilent Technologies). The array contains 42, 034 60-
mer oligo probes to maize genes. Three biological replicates
and a color swap for each replicate were analyzed. The
hybridized slides were scanned using a DNA microarray
scanner G2505C (Agilent Technologies), and signal inten-
sities were extracted by Feature Extraction software
(Version 10.5.1.1; Agilent Technologies). A complete set of
microarray data was deposited to the Gene Expression
Omnibus (GEO) repository under accession number

GSE22943.

Microarray data analysis

For inter-array normalization, a global median normaliza-
tion was applied across all microarrays to achieve the same
median signal intensities for each array, and the false
discovery rate (FDR) estimation method was used to obtain
P values corrected for multiple testing using R software
(http://www.r-project.org/) and the RankProduct package
(Breitling ez al., 2004). The fold change of each probe
between two conditions was calculated using an average of
six replicates (three biological replicates and a color swap
for each replicate). We identified the genes for which there
was more than a 2.0-fold change in expression between the
two conditions on average (at least 1.5-fold change in each
replicate) and whose FDR Pvalue was < 0.05.

Maize expressed sequence tag (EST) sequences were
downloaded from the Dana-Farber Cancer Institute (DFCI)
Maize Gene Index (http://compbio.dfci.harvard.edu/tgi/
cgi-bin/tgi/gimain.pl?gudb=maize). Maize Gene IDs were
identified from the Maizesequence Database (http://www.
maizesequence.org/) by BLASTN similarity searches using
the maize EST sequences as queries. The maximum £ value
was set at 0.0001. The top hit rice genes were selected
using homology-based searches against the Michigan State
University’s (MSU’s) Rice Genome Annotation Project
Database (http://rice.plantbiology.msu.edu/) and the Rice
Annotation Project Database (http://rapdb.dna.affrc.go.jp/
download/index.html). The maximum £ value was set at
0.0001. The putative functions were identified from the MSU
Rice Genome Annotation Project Data Download (heep://
rice.plantbiology.msu.edu/downloads_gad.shtml). The anno-
tations were manually improved using BLASTX searches for
sequences matching the maize EST sequences (http://www.
ncbi.nlm.nih.gov/genbank/GenbankSearch.html).

For gene ontology (GO) analysis, we merged the same
IDs and analyzed the frequency of GO terms of up-
regulated and down-regulated genes using GO Slim
Assignments (http://rice.plantbiology.msu.edu/downloads_
gad.shtml).
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Semi-quantitative RT-PCR analysis

Semi-quantitative RT-PCR analysis was performed to con-
firm the expression pattern of selected genes identified by
the microarray analysis. Two replicate samples were used
for RNA extraction. First-strand ¢cDNA was synthesized
using Superscript III (Invitrogen) from 10 ng of total RNA
extracted from root cortical cells or stelar cells as already
described. KOD FX (TOYOBO, Tokyo, Japan) was used
for subsequent PCR amplification with appropriate primers
(Supporting Information Table S1): initial denaturation
(94°C for 2 min) and 29-45 cycles of denaturation (94°C
for 30 s), annealing (56-62°C for 30 s), extension (68°C
for 30 s) and final extension (68°C for 6 min).

Results

Aerenchyma formation in a maize primary root

To determine a time point for the identification of ethyl-
ene-responsive, aerenchyma formation-associated genes by
the LM microarray analyses, 3-d-old acrobically grown
maize seedlings were kept under waterlogged conditions,
with or without pretreatment with 1-MCP, an inhibitor of
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ethylene perception, for 0, 6, 12, 18 and 24 h, and aeren-
chyma formation (percentage cross-sectional area) was
measured at the basal region of a primary root. Aerenchyma
formation started between 18 and 24 h after waterlogging
treatment, whereas it was suppressed for at least 24 h after
waterlogging treatment when the seedlings were pretreated
with 1-MCP (Fig. 1). These results confirm that ethylene
works as a trigger for inducible aerenchyma formation
under waterlogged conditions. On the other hand, aeren-
chyma formation was not observed at the basal region of
roots of 4-d-old seedlings grown under aerobic conditions
(Fig. 1). To perform microarray analysis, we decided to
collect root cortical cells at 12 h after the treatment under
waterlogged conditions, with or without pretreatment with
1-MCP, or under aerobic conditions.

Microarray analyses combined with LM

Three-day-old aerobically grown maize seedlings were
further grown for 12 h under three conditions: under
waterlogged conditions, with or without pretreatment with
1-MCP, or under acrobic conditions; then, the basal parts
of the primary roots were fixed and tissue sections were pre-
pared for LM. Cortical cells were collected from the tissue

Time (h)
Waterlogged
(b) Waterlogged conditions
conditions

(+ 1-MCP)

Fig. 1 Aerenchyma formation of maize (Zea
mays) primary roots under waterlogged
conditions (closed squares), waterlogged
conditions with 1-methylcyclopropene
(1-MCP) pretreatment (circles) and aerobic

Aerobic
conditions

New Phytologist (2011) 190: 351-368
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conditions (open squares). (a) The extent of
aerenchyma formation (area of the
aerenchyma per area of the whole root on
the section) was analyzed at each 6 h for a
period of 0-24 h after the start of treatment.
All values are means (n = 9) + SD. Three
roots were subjected to analysis in each of
the three experiments. (b) Tissue sections of
maize root at 24 h after the start of
treatment. Bar, 100 um.

© 2010 The Authors
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Fig. 2 Isolation of cortical cells from paraffin-embedded sections of
a maize (Zea mays) primary root using laser microdissection (LM).
(a) A root tissue section before LM. (b) A root tissue section after
LM. (c) LM-isolated cortical cells. Bars, 100 um.

sections via LM (Fig. 2). The RNA samples extracted from
the LM-isolated cortical cells were labeled with Cy3 or Cy5
dye, and the labeled cDNA from each of three biological
replications was hybridized to maize oligo-microarrays. To
identify the genes expressed during aerenchyma formation,
gene expressions were compared between the waterlogging
treatment and the aerobic control (Expt 1) or between the
waterlogging treatment without 1-MCP pretreatment and
the waterlogging treatment with 1-MCP pretreatment
(Expt 2). The resulting data were analyzed as described in
the Materials and Methods section. For each experiment,
we selected genes whose intensities were > 2.0-fold higher
or lower under one condition than under another condition
(FDR P value < 0.05). As a result, the signal intensities of
575 genes (c. 1.4%) among the 42,034 gene probes spotted
on a microarray slide were significantly different between
the two treatments common in Expts 1 and 2. Among

© 2010 The Authors
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Up-regulated genes in WL or - MCP

Experiment 2
(-MCP vs +MCP)

Experiment 1
(WL vs Aer)

552

Down-regulated genes in WL or - MCP

Experiment 2
(-MCP vs +MCP)

Experiment 1
(WL vs Aer)

772

Fig. 3 Number of genes up-regulated or down-regulated under
waterlogged conditions [without 1-methylcyclopropene (1-MCP)
pretreatment]. Genes whose signal intensities were > 2.0-fold higher
or lower under one condition than under another condition (FDR P
value < 0.05) were considered to be up-regulated or down-regulated,
and the genes commonly up-regulated or down-regulated in both
experiments were collected. Experiment 1: 12 h waterlogged
conditions (WL)/12 h aerobic conditions (Aer). Experiment 2: 12 h
waterlogged conditions without 1-MCP pretreatment (-MCP)/12 h
waterlogged conditions with 1-MCP pretreatment (+MCP).

them, it was likely that 239 genes (c. 0.6%) were up-regu-
lated and 336 genes (c. 0.8%) were down-regulated under
the conditions inducing aerenchyma formation (i.e. water-

logged conditions) (Fig. 3, Tables S2, S3).

Characterization of specific gene clusters based on GO

The up-regulated and down-regulated genes were classified
into several categories based on their allocated GO terms
using GO Slim Assignments (http://rice.plantbiology.msu.
edu/downloads_gad.shtml) (Fig. 4). Approximately 36% of
the up-regulated genes and ¢. 32% of the down-regulated
genes were categorized to genes responsive to stress and
several stimuli (e.g. abiotic, biotic, endogenous, external
and extracellular stimuli). The genes related to cellular pro-
cess, biosynthetic process and transport were also relatively
abundant in both the up-regulated and down-regulated
genes. On the other hand, 5.9% of the up-regulated genes,
but only 0.002% of the down-regulated genes, were transla-
tion-related genes encoding ribosomal proteins, translation
initiation factors and translation elongation factors (Fig. 4).

Validation of gene expression patterns by
semi-quantitative RT-PCR

Some of the genes shown to be up-regulated or down-regulated
by the microarray were also analyzed by semi-quantitative
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RT-PCR to confirm the change in expression. For this,

we selected 13 genes (11 up-regulated and two down-
regulated), which included three reactive oxygen species (ROS)
generation/scavenging-related genes, three calcium signal-
ing-related genes, three cell wall modification-related genes,
one transporter gene and three transcriptional regulation-
related genes (Table 1). The semi-quantitative RT-PCR
results confirmed the microarray results for each of the
genes (Fig. 5).

Tissue-specific gene expression analysis

To examine whether the ethylene-mediated waterlogging-
responsive expression of the selected genes was associated
with aerenchyma formation, we used LM to collect sections
of cortical cells (aerenchyma-forming tissue) and stelar cells
(nonaerenchyma-forming tissue) from cross-sections of pri-
mary roots that had been exposed to waterlogged or aerobic
conditions for 12 h (Fig. 6a), and performed semi-quanti-
tative RT-PCR (Fig. 6b). Under waterlogged conditions,
all of the 13 selected genes (Table 1) were up-regulated or
down-regulated in cortical cells. Eight (RBOH, MnSOD,
CBL, CML, CNGC, XET, ERF and UVRS8L) were also up-
regulated or down-regulated in stelar cells, but the differ-
ence in the mRNA levels between waterlogged and aerobic
conditions was greater in cortical cells than in stelar cells

(Fig. 6b).

New Phytologist (2011) 190: 351-368
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ROS generation/scavenging-related genes

The production of ROS has been implicated in diverse
physiological processes, including programmed cell death, in
plants (Overmyer ez al., 2003). One of the major sources of
ROS in plants is a reaction mediated by NADPH oxidase,
which is responsible for the conversion of O, to superoxide
anion (O,7), thereby leading to the production of hydrogen
peroxide (H,0O,) (Overmyer ez al., 2003). Here, we found
several ethylene-mediated waterlogging-responsive genes
related to ROS generation or ROS scavenging (Table 2).
The up-regulated genes include those encoding respiratory
burst oxidase homolog (RBOH), glutathione S-transferase
and manganese superoxide dismutase, and the down-regu-
lated genes include those encoding RBOH and metallothi-
onein (MT). The RBOH gene products are involved in ROS
generation, and the other gene products are involved in ROS
scavenging. Among these genes, RBOH (GRMZM2G30
0965) showed a 117-fold higher expression level under
waterlogged conditions than under aerobic conditions, and
the induction was partially suppressed by treatment with
1-MCP (Fig. 5, Table 2). As shown in Fig. 6(b), up-regulation
of RBOH expression was observed in both cortical cells and
stelar cells, but the mRNA levels appeared to be slightly
higher in cortical cells than in stelar cells under waterlogged
conditions. On the other hand, the MnSOD gene
(GRMZM2G160629) was up-regulated preferentially in

© 2010 The Authors
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Fig. 5 Validation of expression for genes selected from the
microarray analysis with semi-quantitative reverse transcription-
polymerase chain reaction (RT-PCR). Semi-quantitative RT-PCR
analysis of the selected genes was performed with appropriate
primers (Supporting Information Table S1). The alphanumeric
symbols in parentheses indicate the Maize Gene IDs of the
Maizesequence Database. The ubiquitin gene (UBQ) was used as a
control. Aer, aerobic conditions; -MCP, waterlogged conditions
without 1-methylcyclopropene (1-MCP) pretreatment; +MCP,
waterlogged conditions with 1-MCP pretreatment; ROS, reactive
oxygen species generation/scavenging; TP, transporter; WL,
waterlogged conditions.
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cortical cells under waterlogged conditions. Interestingly,
the MT gene (GRMZM2G164229) was constitutively
expressed in both cortical cells and stelar cells under aerobic
conditions, but the M7 mRNA levels were decreased specifi-
cally in cortical cells under waterlogged conditions (Fig. 6b).

Calcium signaling-related genes

Many studies have suggested that the cytosolic calcium ion
(Ca®") functions as a second messenger for signaling path-
ways in response to oxygen deprivation (Subbaiah ez al,
1994; Tsuji er al., 2000; Baxter-Burrell ez al., 2002). Ca**
signaling may also be involved in aerenchyma formation in
maize roots (He et al, 1996b). In this study, several genes
implicated in calcium signaling, whose expression was chan-
ged significantly under waterlogged conditions (without
1-MCP pretreatment) in both Expts 1 and 2, were identified

New Phytologist (2011) 190: 351-368
www.newphytologist.com

New
Phytologist

(Table 2). They included up-regulated genes encoding
calcineurin B-like protein (CBL), Caz+—binding domain-
containing proteins and calmodulin-like protein (CML),
and down-regulated genes encoding calcium/calmodulin-
dependent protein kinases, CBL, cyclic nucleotide-gated ion
channel (CNGC) protein and CML (Table 2). As shown in
Fig. 6(b), the up-regulation of CBL (GRMZM2G125838)
and CML (GRMZM2G467184) and the down-regulation
of CNGC (GRMZM2G074317) were observed in both
cortical cells and stelar cells, but the changes in expression
were more pronounced in cortical cells than in stelar cells.

Cell wall modification-related genes

The last step of aerenchyma formation involves cell wall
loosening and degradation, in which many enzymes, includ-
ing XETs, expansins, CELs and pectinases, are involved (He
et al., 1994; Saab & Sachs, 1996; Jackson & Armstrong,
1999). In this study, several of the up-regulated genes encode
these enzymes, including the genes for pectinesterase, pectate
lyase, polygalacturonase (PG), XET, CEL, expansin and
invertase/pectin  methylesterase inhibitor family protein,
and several down-regulated genes encode cellulose synthase
and cellulose synthase-like C family protein (Table 2).
Under waterlogged conditions, two of the three selected cell
wall modification-related genes, the genes encoding PG
(GRMZM2G037431) and CEL (GRMZM2G141911), were
specifically up-regulated in cortical cells, whereas the XET gene
(GRMZM2G174855) was up-regulated in both cortical cells
and stelar cells (Fig. 6b).

Protein kinase, protein phosphatase and transcriptional
regulator genes

Among the waterlogging-sensitive genes, 16 genes were
protein kinase genes (four up-regulated and 12 down-
regulated) and two genes were protein phosphatase genes
(both up-regulated) (Table 3). This is consistent with a previous
finding that protein phosphorylation and dephosphory-
lation are important for the regulation of aerenchyma
formation in maize (He ez al., 1996b).

Of the 34 genes encoding putative transcriptional regulators,
including transcription factors of > 20 different families, 13
genes were up-regulated and 21 genes were down-regulated
(Table 4). Among these genes, the gene encoding an AP2
domain-containing protein (GRMZM2G053503), which is
similar to ethylene response factor (ERF), showed a strong
(c. 30-fold) increase in expression under waterlogged con-
ditions, and the induction was partially suppressed by
pretreatment with 1-MCP (Fig. 5, Table 4). The expres-
sion of a gene [designated as RAVI-like (RAVIL) in this
study; GRMZM2G169654] encoding a protein containing
a B3 DNA-binding domain, which is homologous to an
AP2/ERF domain and B3 domain containing transcription

© 2010 The Authors
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Fig. 6 Tissue-specific expression analysis of
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genes selected from the microarray analysis.
(a) Isolation of stelar cells (stele) and cortical
cells (cortex) from paraffin-embedded tissue
sections of a maize (Zea mays) primary root
using laser microdissection. Bars, 100 pum.
(b) Semi-quantitative reverse transcription-
polymerase chain reaction (RT-PCR) analysis
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of the selected genes. The alphanumeric
symbols in parentheses indicate the Maize
Gene IDs of the Maizesequence Database.
The ubiquitin gene (UBQ) was used as a
control. Aer, aerobic conditions; Co, cortex;
ROS, reactive oxygen species generation/
scavenging; St, stele; TP, transporter; WL,
waterlogged conditions.
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factor RAV1, was also induced under waterlogged conditions,
and seemed to be controlled by ethylene (Fig. 5, Table 4).
Another up-regulated gene is a regulator of chromosome con-
densation domain-containing protein (GRMZM2G003565).
It is a UVR8-like gene (UVRSL), which is homologous to the
Arabidopsis UVRS gene (Table 4). Three other up-regulated
genes are related to histone modification. These include a jmjC
domain (jumonj-C-domain)-containing protein (GRMZM2G-
417089) and two histone acetyltransferases (GRMZM2G069886
and GRMZM2G106673) (Table 4). Under waterlogged
conditions, the ERF (GRMZM2G053503) and UVRSL
(GRMZM2G003565) genes were mainly up-regulated in
cortical cells and the RAVIL (GRMZM2G169654) gene
was up-regulated only in cortical cells (Fig. 6b).

Discussion

To better understand the molecular mechanism of aeren-
chyma formation in maize root cortical cells, we screened
for genes whose expression changed in response to ethylene
under waterlogged conditions, and found 239 up-regulated
genes and 336 down-regulated genes. Unsurprisingly, many
of the genes (c. 36% of the up-regulated genes and ¢. 32%
of the down-regulated genes) are known to be responsive to
stress or other stimuli (Fig. 4). However, it is not clear why
many translation-related genes (5.9%) are included in the
up-regulated genes, but not in the down-regulated genes. It
is known that translation of many normal cellular mRNAs
is extremely limited in maize roots under anoxia, whereas
mRNAs for anaerobic proteins (related to anaerobic metab-
olism, such as glycolysis and fermentation) are selectively
translated (Sachs ez al, 1980; Bailey-Serres, 1999). The

© 2010 The Authors
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selective translation under oxygen deprivation is important
for energy conservation and facilitates the transition to
anaerobic metabolism (Branco-Price ez a/., 2008). Thus, to
understand the roles of the differentially expressed genes
(including the up-regulated translation-related genes), it is
necessary to examine whether their mRNAs are effectively
translated in root cortical cells under waterlogged conditions.

RBOH, a plant homolog of gp91°"* in mammalian
NADPH oxidase, has an important role in ROS-mediated
signaling, such as the defense response, programmed cell
death and development in plants (Torres ez al, 2002;
Foreman et al., 2003; Takeda ez al., 2008; Yoshioka ez al.,
2009). Indeed, the Rop (RHO-like small G-protein of
plants)-dependent H,O, production mediated by NADPH
oxidase, the activity of which is stimulated by Ca**, contrib-
utes to the induction of expression of ADH and RopGAP4
genes in Arabidopsis under oxygen deprivation (Baxter-
Burrell et al, 2002). In rice, ethylene-induced, H,O,-
mediated epidermal cell death, which precedes the emer-
gence of adventitious roots, is regulated by NADPH oxidase
(Steffens & Sauter, 2005, 2009). Here, we found that one
RBOH gene (GRMZM2G300965) was up-regulated and
another RBOH gene [ZmRBOHA (Lin et al, 2009);
GRMZM2G426953] was down-regulated during aeren-
chyma formation in maize roots, implying that the roles of
the two RBOH proteins may be different. The maize up-
regulated RBOH is homologous to rice OsRBOHH
(Wong et al., 2007), Arabidopsis AtRBOHB (Torres ef al.,
1998) and potato St(RBOHB (Yoshioka ez 4/, 2001) (data
not shown). In potato, treatment of tubers with hyphal
wall components (HWCs) from Phytophthora infestans
causes a rapid and transient oxidative burst (i.e. H,O,
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2 accumulation; phase I), followed by a massive oxidative burst
0 o y
%‘ 3 :’.8 (phase II) (Yoshioka ez al, 2001). It is likely that SSRBOHA
Q. . . .
8 1L contributes to phase I of the oxidative burst, and that other
— - Q .
3 S U § - RBOHSs (StRBOHB, StRBOHC and StRBOHD) contribute
8 ¥ 8=E - = to phase IT (Yamamizo ez a/, 2006). Both oxidative bursts are
L= O 0 % S < p
g S5 = < inhibited by the serine/threonine protein kinase inhibitor
(SR} -~ L .
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> 2 TR TEE) > . .. .
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2| 23888282 % = involved in H,O, production, and the H,O, induces cell
2| 2833TT| S < death (i.e. aerenchyma formation) in root cortical cells. On
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S| &3 £ U= g the other hand, we found that the expression of the gene
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% g9 ° é 5 ; Z < encoding MT (GRMZM2G164229), which works as an
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g = waterlogged conditions, and that the repression seemed to be
< = ethylene dependent (Fig. 5, Table 2). Interestingly, the rice
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2199 &aR®| oo @ Metallothionein2b (MT2b) gene is down-regulated in
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8 %y Yool = 5 response to ethylene and H,O, in epidermal cells, thereby
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21006 OO0 | o ‘:‘% oxidase (i.e. RBOH), to induce cell death (Steffens &
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2 88 333|3 g Sauter, 2009). Similarly, the cortical cell-specific down-
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- 277k .§ Kg regulation of the maize M7 gene (Fig. 6b) may contribute to
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s E S higher accumulation of the RBOH-produced H,O,, which
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formation by decreasing cytosolic Ca** in maize roots, even
under anaerobic conditions (He ez al, 1996b). It seems that
Ca®* can bind directly to Ca**-binding EF-hand motifs in
the N-terminal region of RBOH (i.e. NADPH oxidase)
and stimulate its activity (Keller ez /., 1998; Sagi & Fluhr,
2001; Oda et al, 2010). On the other hand, it has been
reported that calcium-dependent protein kinase activates
RBOH by phosphorylation of its N-terminal region
(Kobayashi ez al., 2007). On the basis of these results, an
interaction between Ca®* signaling and RBOH-mediated
H,0, production might be important for programmed cell
death in root cortical cells.

In plants, complexes of Ca®* sensors (CBLs) and their
targets [CBL-interacting protein kinases (CIPKs)] form a
complex network of Ca>* signaling, and are responsible
for environmental adaptation processes (Luan er /., 2009;
Weinl & Kudla, 2009), implying that the up-regulated CBL
(GRMZM2G125838) and down-regulated CBL (GRMZM
2G173424) might be involved in adaptation (e.g. aeren-
chyma formation) to waterlogged conditions. The genes
(GRMZM2G074317 and GRMZM2G078781) encoding
proteins similar to cyclic nucleotide-gated ion channel
AtCNGC2 and AtCNGCH4, respectively, were included in
the down-regulated genes. AtCNGC2 is involved in influxes
of Ca** and K* in a cyclic nucleotide-dependent fashion
(Leng er al, 1999). It is noteworthy that murtations of
AtCNGC2and AtCNGC4 genes [designated defense, no death
1(dndI) and dnd2, respectively] cause a phenotype that shows
reduced ability to produce the hypersensitive response (HR)
in response to avirulent Pseudomonas syringae pv. glycinea
(Clough ez al.,2000; Jurkowski ez al.,2004).

Several genes related to cell wall loosening and degrada-
tion were up-regulated under waterlogged conditions, and
it is likely that their induction was controlled by ethylene
(Table 2). We found that a gene (GRMZM2G174855)
encoding XET, a cell wall loosening enzyme, was up-regu-
lated in both cortical cells and stelar cells in response to
waterlogging (Figs 5, 6b). Previously, Saab & Sachs (1996)
reported that XE7 mRNA was strongly accumulated in
maize seedlings under flooding. Treatment with an ethylene
biosynthesis inhibitor, AOA, under flooded conditions pre-
vented the development of aerenchyma in maize roots and
totally suppressed the accumulation of XET mRNA, sug-
gesting that ethylene-responsive XET induction is involved
in aerenchyma formation through cell wall loosening and
degradation (Saab & Sachs, 1996). The XET gene identified
in this study is not the same as the XET gene reported by
Saab & Sachs (1996), suggesting that at least two ethylene-
responsive XET genes are strongly expressed in maize roots
under waterlogged conditions. The up-regulation of other
genes related to cell wall loosening or degradation (e.g. pec-
tinesterase, pectate lyase, PG and CEL) may also contribute
to the activation of hydrolytic enzymes, including CEL,
xylanase and pectinase, in maize roots under waterlogged

© 2010 The Authors
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conditions (Jackson & Armstrong, 1999). Indeed, the
expression of genes encoding PG (GRMZM2G037431) and
CEL (GRMZM2G141911) was up-regulated specifically in
cortical cells under waterlogged conditions (Fig. 6b). On the
other hand, we found that the genes for cellulose synthase
(GRMZM2G028353 and GRMZM2G424832) and cellu-
lose synthase-like C family protein (GRMZM2G074792)
were down-regulated, suggesting that this down-regulation
promotes cell wall degradation via repression of cellulose
synthesis. We also identified a gene (GRMZM2G450055)
encoding plasma membrane H'-ATPase as a cortical
cell-specific up-regulated gene (Figs 5, 6b, Table 1). It is
proposed that the extrusion of intracellular H" into the cell
wall by plasma membrane H*-ATPase results in a decrease
in apoplastic pH, which induces cell wall loosening, possibly
mediated by low-pH-activated expansins and XETs (Frias
et al., 1996; Shich & Cosgrove, 1998). Thus, the expression
of the XET gene (GRMZM2G174855) is up-regulated in
both cortical cells and stelar cells, but the activity of XET
protein might be enhanced preferentially in cortical cells
because the gene encoding plasma membrane H*-ATPase
shows cortical cell-specific induction of expression under
waterlogged conditions. In this way, the up-regulated
H"-ATPase gene might be involved in cell wall loosening in
cortical cells during cell death.

Under waterlogged conditions, the ERF gene
(GRMZM2G053503) was preferentially up-regulated in
cortical cells and the RAVIL gene (GRMZM2G169654)
was specifically up-regulated in cortical cells (Figs 5, 6b,
Table 4). The up-regulation of these genes was suppressed
by 1-MCP pretreatment (Fig. 5, Table 4). Recently,
Licausi er al. (2010) have identified two Arabidopsis
hypoxia-inducible ERF genes, HREI and HRE2, which
belong to group VII of the ERF family in Arabidopsis
(Nakano ez al., 2006), and have proposed that HREI and
HRE2 play a partially redundant role in the tolerance of
plants to anaerobic stress by enhancing anaerobic gene
expression and ethanol fermentation. Group VII of the
ERF family also contains Arabidopsis RAP2.2 (Hinz ez al,
2010), rice SUB1A (Fukao et al, 2006; Xu et al., 2006;
Fukao & Bailey-Serres, 2008), and rice SNORKELL1 and
SNORKEL2 (Hattori ez al, 2009), all of which play
important and distinct roles in survival under hypoxia or
submergence. Interestingly, the maize up-regulated ERF is
highly homologous to the Arabidopsis HRE2 protein, sug-
gesting that the maize ERF gene, like the Arabidopsis HRE2
gene, is involved in the adaptation of plants to waterlogged
conditions. However, to date, it is unclear whether tran-
scriptional regulation by this ERF affects aerenchyma for-
mation in maize roots, and thus further functional analysis
of the ERF gene is necessary. On the other hand, it has been
reported that the expression of the Arabidopsis RAVI gene
is induced by treatment with ACC (a precursor of ethylene
biosynthesis) and that the RAV1 protein positively controls
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leaf senescence, which is a developmentally programmed
cell death process (Woo et al., 2010). Similarly, in maize,
the cortical cell-specific RAVIL protein may be positively
involved in programmed cell death (i.e. in aerenchyma for-
mation) in root cortical cells under waterlogged conditions.

Three genes related to histone modification were induced
under waterlogged conditions (without 1-MCP pretreat-
ment) in both Expts 1 and 2 (Table 4). One of the histone
modification-related genes (GRMZM2G417089) encodes a
jmjC domain-containing protein. Recently, some jmjC
domain-containing proteins have been shown to be histone
demethylases (Mosammaparast & Shi, 2010). We have
reported previously that submergence and re-aeration of
rice cause dynamic and reversible changes of the histone
methylation and acetylation states for the genes involved in
anaerobiosis (Tsuji ez al, 2006). Similarly, it is possible
that dynamic histone modifications occur in chromatin at
particular genes in the maize cortex in response to ethylene
under waterlogged conditions, and that the three maize up-
regulated gene products contribute to the changes in histone
methylation and acetylation.

In conclusion, in this study, we found that genes related
to many types of molecular function (e.g. ROS generation
or scavenging, Ca** signaling and cell wall modification)
were up-regulated or down-regulated in root cortical cells
under waterlogged conditions, and their expression was
likely to be regulated by ethylene. We are also currently
conducting microarray analysis for the identification of the
inducible aerenchyma formation-associated genes of rice.
By comparison of these microarray data and the identifica-
tion of the genes up-regulated or down-regulated in common
in maize and rice during aerenchyma formation, good
candidate genes for functional analyses may be selected.
The data should provide a basis for an understanding of the
molecular mechanism of inducible lysigenous aerenchyma
formation in plants.
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