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Selection on soil microbiomes reveals reproducible
impacts on plant function
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Soil microorganisms found in the root zone impact plant growth and development, but the potential
to harness these benefits is hampered by the sheer abundance and diversity of the players
influencing desirable plant traits. Here, we report a high level of reproducibility of soil microbiomes
in altering plant flowering time and soil functions when partnered within and between plant hosts.
We used a multi-generation experimental system using Arabidopsis thaliana Col to select for soil
microbiomes inducing earlier or later flowering times of their hosts. We then inoculated the selected
microbiomes from the tenth generation of plantings into the soils of three additional A. thaliana
genotypes (Ler, Be, RLD) and a related crucifer (Brassica rapa). With the exception of Ler, all other
plant hosts showed a shift in flowering time corresponding with the inoculation of early- or late-
flowering microbiomes. Analysis of the soil microbial community using 16 S rRNA gene sequencing
showed distinct microbiota profiles assembling by flowering time treatment. Plant hosts grown with
the late-flowering-associated microbiomes showed consequent increases in inflorescence biomass
for three A. thaliana genotypes and an increase in total biomass for B. rapa. The increase in biomass
was correlated with two- to five-fold enhancement of microbial extracellular enzyme activities
associated with nitrogen mineralization in soils. The reproducibility of the flowering phenotype
across plant hosts suggests that microbiomes can be selected to modify plant traits and coordinate
changes in soil resource pools.
The ISME Journal advance online publication, 28 October 2014; doi:10.1038/ismej.2014.196

Introduction

Recent studies have highlighted the ability of plant-
associated microbiomes to influence plant traits
including disease resistance, growth and abiotic
stress tolerance (Swenson et al., 2000; Mendes et al.,
2011; Lau and Lennon, 2012; Bainard et al., 2013;
Sugiyama et al., 2013). When a fast-growing plant is
studied in conjunction with its microbiome across
multiple generations, new forms of interactions can
be observed between plants and microorganisms
shaping plant development. Similar experimental
designs using a multi-generational approach have
been used to document rapid evolution in plant–
insect interactions (Züst et al., 2012; Agrawal et al.,
2013). In the rhizosphere specifically, two recent
publications have focused on soil microbiomes to
address drought tolerance and disease resistance
(Mendes et al., 2011; Lau and Lennon, 2012).

An earlier study by Swenson et al. (2000) indicates
that the microbially mediated mechanisms of
plant growth can be passed on through multiple
generations of experimental evolution to modulate
plant biomass levels. Here, we merge these
approaches to examine how selection at the com-
munity level (soil microorganisms) for the plant
host trait (flowering time) has consistent and
reproducible effects on plant function across
multiple hosts.

The ability to assemble trait-associated micro-
biomes into new plant hosts is a critical step in
developing an effective microbiome component to
plant production systems, particularly for high-
value crops that rely on transplantation of young
plants into field or greenhouse settings. The ability
to progressively enrich for microbiota associated
with a specific plant trait facilitates the use of more
complex communities instead of a single microbial
strain. Related research on disease-suppressive soils
illustrates how the concept of multiple plantings of
a plant species can enrich for beneficial microbiota
that enhance disease resistance in successive
generations of plant hosts (Mazzola, 2004; Kinkel
et al., 2011). Transfer of the microbiota into fumigated
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or sterilized soil containing the young developing
plant could help establish persistent plant-asso-
ciated microbiomes after transplantation to field
settings.

In this study, we used a multi-generation
approach to generate enriched microbiomes that
induce flowering time as the targeted plant trait.
Applying community selection on microbiomes
through observable changes on a plant trait can
demonstrate the potential for complex communities
of microorganisms to shape rapid change in plant
population traits. We examined the ability of soil
microbiomes selected over 10 plantings for progres-
sively earlier or later flowering in Arabidopsis
thaliana genotype Col to induce the same early
(EF)- and late-flowering (LF) times in four novel
plant hosts (Supplementary Figure S1). The soils
received low fertilizer inputs to maintain nutrient
limitation throughout the study and the soils were
steam-sterilized to facilitate establishment of the
inoculating microbiome into new soils. The central
focus of this study features microbiomes from the
tenth generation of plantings inoculated into the
soils of novel plant hosts that included Brassica
rapa (BR) and three A. thaliana genotypes: Rld,
Landsberg erecta (Ler) and Bensheim (Be). We
hypothesized that the community selection of
microbiomes across 10 generations of earlier or later
flowering times in A. thaliana Col would result in
EF- vs LF plastic responses across all A. thaliana
hosts and the related B. rapa upon inoculation into
these novel host soils, and that these microbiomes
would differ in phylogenetic composition by flower-
ing time responses.

Materials and methods

Growth chamber conditions
All plants were grown at 22 1C on a 16/8 h day/night
cycle. Relative humidity was set to 75%, and light
level was set at 250 mE. (Percival-Cornell University
Weill Hall Life Sciences Growth Chamber Facility,
Ithaca, NY, USA)

Multi-generation selection of microbiome inoculants
Inoculants for EF- and LF-associated microbiomes
were generated through an iterative selection process
adapted from Swenson et al. (2000). Approximately
100 A. thaliana seeds were placed in each of 14
replicate microcosms (7.6 cm diameter � 8 cm height
pots) containing 1:1 mixture of field soil: potting mix
soil (LM-3 General Purpose Mix; Lambert Peat Moss
Inc., Rivière-Ouelle, QC, Canada). The field soil was
obtained from a collection of sites across Ithaca,
NY, USA (42.456583, � 76.368822; 42.452265,
� 76.369477; and 42.414913, � 76.442272) represen-
tative of agricultural, forest and grassland ecosystems.
The intention was to include a diversity of soil
microorganisms for the initial generation. The potting

mix was autoclaved for each generation, and became
the growing media for the experimental selection. The
EF- and LF-associated treatments were established
with 14 replicate units each per planting and a control
group included 7 units paired with each flowering
treatment (14 control units). In each generation, four
microcosms were selected based on the highest degree
of the plant trait desired. This corresponded with
progressively later flowering or earlier flowering as
determined by uniform flower bolting in 90% of the
individuals in a unit. Controls were paired with each
flowering time microbiome treatment to examine plant
traits and soil extracellular enzyme activity results
relative to plant phenology. The controls consisted of
the plants and steam-sterilized soils, but the units
were not inoculated with EF- or LF-associated
microbiomes.

Biomass and soils were harvested immediately
following flowering of all pots within a group. Loose
soil was separated from roots of the four earliest vs
four latest flowering replicate units of each treat-
ment group, pooled and mixed with sterile water to
form the EF and LF inoculants. Soil slurry inocu-
lants were prepared with 180 ml of sterile deionized
water and 30 g of fresh rhizosphere soil, and then
shaken vigorously for 60 s upon preparation and
periodically during inoculation to make a soil
suspension. Each unit for the subsequent generation
received 12 ml of the corresponding treatment
inoculant. The control group did not receive
inoculants of the microbiomes. All seeds across the
multi-generation planting were derived from a static
seed pool of a highly inbred line, A. thaliana Col
(Lehle Seed Co., Round Rock, TX, USA). Seeds were
derived from this common seed pool to maintain
consistent allelic frequencies across all generations
and to ensure that any changes in plant traits are the
result of microbiome selection. For example, the
same pool of seeds was used across generations 1
through 10 and in the EF, LF and control treatments.
All microcosms were watered through capillary
action using individual reservoirs for each unit.
A low level of available nutrients in the potting
medium, as well as in the watering regime ensured
that the plants were under nutrient limitation,
providing a strong filter to impose microbiome
effects on soil nutrient mineralization. Fertilizer
requirements for A. thaliana are high (200 ppm
nitrogen (N) every other day) to achieve optimal
growing conditions (Eddy et al., 2008), but we used
a fraction of the amount comprising applications of
10 ppm N for generations 1 through 5 for each
watering event and three applications of 10 ppm N
per generation for generations 6 through 10. As the
genetic pool of the plants was held constant, the
only adaptive traits to evolve over the iterative
generations were derived from the soil inoculation
(soil microbial community). This selection process
continued for 10 successive generations (plantings)
to develop distinct, trait-associated soil micro-
biomes associated with EF/LF time.
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Transfer of microbiomes to novel plant hosts
Approximately 100 seeds of A. thaliana Col, Ler,
RLD and Be (Lehle Seed Co.) and six seeds of rapid
cycling B. rapa (Carolina Biological Supply Co.,
Burlington, NC, USA) were placed in separate units
with 14 replicates measuring 7.6 cm diameter �
8 cm height. Each unit contained the same potting
mix used in the multi-generation microbiome selec-
tion. The soil mix was autoclaved prior to adding
seeds. The EF- and LF microbiomes were inoculated
separately into their corresponding replicated units.
Each flowering time treatment was paired with a
control with seven replicate units. Microorganisms
were excluded in the control group inoculants. Each
plant host was arranged in the growth chamber in a
randomized block design. All units of a plant host
received the same amount of fertilizer consisting of a
10% solution (10ppm N, 10.5% nitrate/89.5% urea)
of 20-10-20 Jack’s Professional General Purpose
Fertilizer (J.R. Peters, Inc., Allentown, PA, USA).
Plant hosts Be, Col and Ler received three equal
doses of fertilizer during growth for a total of 0.9 mg
added N, whereas RLD received two doses for a total
of 0.65 mg added N, and B. rapa received no
fertilizer. The difference in fertilizing regimes was
due to the rapid flowering, and completion of life
cycle, in the EF group for RLD and B. rapa in
advance of the fertilization schedule and the need to
keep nutrient addition constant between treatments.

Plant biomass
Plant aboveground biomass was harvested after
flower bolting had begun in 90% of the individuals
of each replicate microcosm. Biomass was harvested
in two separate portions, reproductive structure and
leaf tissue, for the A. thaliana genotypes, and whole
for B. rapa. Harvested tissue was dried at 50 1C until
constant weight.

Soil collection and storage
To maximize rhizosphere soil yield, loose soil was
removed and soil adhering to the roots was
collected. The soil was homogenized and a portion
was immediately frozen at � 80 1C for DNA analysis.
The other half was analyzed for extracellular
enzyme potential activity.

Soil extracellular enzyme activity
We sought to assess microbiome influence on soil
processes by measuring the potential activities of
soil extracellular enzymes involved in N minerali-
zation. The inclusion of potential extracellular
enzyme activity measurements in this study is based
on observations of soil nutrient variables established
over generations of selection for changes in plant
biomass (Swenson et al., 2000). The enzymes
include N-acetyl glucosaminidase, leucine amino-
peptidase and phenol oxidase. They function in
depolymerizing organic matter and facilitate micro-
bial access to N sequestered within the complex

structures (Sinsabaugh, 2010). N-acetyl glucosami-
nidase and leucine aminopeptidase were measured
by fluorometric quantification and phenol oxidase
was quantified by absorption. We used 4-methylum-
belliferone- and 7-amino-4-methylcoumarin-labeled
substrates (200 mM), and L-3,4-dihydroxyphenylala-
nine (25 mM) substrate to provide quantifiable
fluorescence and color for quantification of oxida-
tion (Saiya-Cork et al., 2002; German et al., 2011).
Soil slurries were prepared from 5 g fresh soil in
150 ml sodium bicarbonate buffer (50 mM, pH 7) and
homogenized with an immersion blender for 1 min.
Hydrolytic enzyme assays were conducted in black
96-well microplates and oxidative assays were
carried out in transparent-bottom 96-well micro-
plates. Standard curves were made for each
soil sample (soil slurryþ 4-methylumbelliferone or
7-amino-4-methylcoumarin standard of 0, 2.5, 5, 10,
25, 50mM). A 200 ml volume of soil slurry and 50 ml of
4-methylumbelliferone or 7-amino-4-methylcou-
marin standards were added into wells of standard
plate, and 200 ml of soil slurry and 50 ml of the
labeled substrate into wells of substrate plate. Plates
were incubated in the dark at 25 1C for 3 h and
fluorescence was measured immediately after
removal from the incubator with a BioTek Synergy
HT microplate reader (BioTek Industries, Inc.,
Winooski, VT, USA) (ex: 365 nm, em: 450 nm). The
oxidative enzyme plate contained a buffer blank
(250 ml buffer), a L-3,4-dihydroxyphenylalanine
blank (200 ul bufferþ 50 ml L-3,4-dihydroxyphenyla-
lanine), sample blank (200 ml slurryþ 50 ml buffer)
and the sample wells (200 ml slurryþ 50 ml L-3,4-
dihydroxyphenylalanine). Oxidative plates were
incubated in the dark at 25 1C for 3 h and absorbance
was measured at 460 nm with the BioTek microplate
reader. We calculated activity based on equations
from previous work (Saiya-Cork et al., 2002; German
et al., 2011).

Microbiome 16 S rRNA gene sequencing
Soil DNA was extracted from frozen samples using
the PowerSoil DNA Isolation Kit (MO BIO
Laboratories, Inc., Carlsbad, CA, USA) according to
the recommended protocol for highly organic soil.
Approximately 0.1 g of soil from each sample was
used for isolation of soil DNA. We normalized
isolated samples to a concentration of 10 ng ul�1

by dilution with PCR-grade water. Quantification
was performed with the standard dsDNA quantifica-
tion protocol for Picogreen (Thermo Fisher Scien-
tific, Inc., Waltham, MA, USA). Samples with
concentrations below 10 ng ul�1 were extracted
again at lower elution volume and pooled until a
concentration above 10 ng ul� 1 was reached for
normalization. All pipetting for DNA extraction
and normalization was conducted with an Eppen-
dorf epMotion 5075 pipetting robot (Eppendorf AG,
Hamburg, Germany).

We amplified 16 S rRNA gene sequences in
duplicate from the extracted DNA. PCR primers
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used are described in Caporaso et al. (2012) that
target the bacterial/archaeal 16 S rRNA gene variable
region 4 (515 F/806 R) for downstream paired-end
Illumina (Illumina, Inc., San Diego, CA, USA)
barcoded sequencing (Caporaso et al., 2012). We
pooled duplicate amplified samples and purified
them with the desalting protocol of the Qiagen
QiaQuick spin filter purification kit (QIAGEN Inc.,
Valencia, CA, USA). An epMotion 5075 was used to
combine equal concentrations of all barcoded
samples and then to dilute the pooled, barcoded
amplicons for submission to the Cornell Life
Sciences Sequencing Core with the custom sequen-
cing primers as detailed in Caporaso et al. (2012) for
multiplexed paired-end sequencing on the Illumina
MiSeq platform.

Statistics
We used the R statistical package (Rproject.org) and
JMP (SAS Institute, Inc., Cary, NC, USA) for all
statistical modeling. All manipulations and calcula-
tions on 16 S rRNA gene sequence data were
conducted in the R statistical package. We modeled
biomass, flowering, tissue nutrient and enzyme
activity data by standard least squares linear regres-
sion with control group values for each response
variable included as a covariate to control for the
effect of being grown at separate times. The analysis
of covariance evaluates each dependent variable
across our treatment groups while controlling for
covariates. Treatment means adjusted to account for
covariates are what are presented in figures to
compare differences between the divergent treat-
ment groups. Statistical significances of these
comparisons are from the application of a post hoc
Fisher’s test of each plant host, and dependent
variable, individually.

Multivariate statistics included multiple linear
regression, correlation and covariance matrices to
understand the data structure and interactions, and
were conducted not only on the biomass, enzyme
potential activity and flowering data but also on the
relative abundance data of the major phyla/classes.
We determined the significance of differences in
abundance data by ANOVA (False Discovery Rate-
corrected) and significant differences between com-
munity composition across groups (LF, EF and
Control) were assessed by a nonparametric statisti-
cal method, adonis, which identifies relevant cen-
troids, calculates squared deviations and determines
significance by F-tests on sequential sums of squares
from permutations of data (Quantitative Insights
into Microbial Ecology (QIIME) Documentation).

Sequence analysis
Paired-end sequences were truncated at the first
low-quality base and quality filtered to remove those
with an average quality score below 25, fewer than
200 nt, greater than 700 nt, ambiguous bases, primer

mismatches, erroneous barcodes and homopolymer
runs exceeding six bases. Paired-end reads were
joined and then demultiplexed within the QIIME
software package (Qiime.org) (Caporaso et al.,
2010b). We analyzed 16 S rRNA gene sequences in
the QIIME software tool with the default parameters
for each step. De novo operational taxonomic unit
(OTU) picking was performed with the uclust option
in QIIME (Edgar, 2010). Representative OTU
sequences were aligned using the PyNAST algo-
rithm with a minimum percent identity of 80%
(Caporaso et al., 2010a). Assignment of taxonomy to
representative OTUs was carried out with the
Ribosomal Database Project (RDP) classifier (Lan
et al., 2012) at the default 97% sequence identity
and 80% confidence level with the bundled RDP-
assigned taxonomies. Sequences matching plant
chloroplast or mitochondrial 16 S rRNA were fil-
tered from the dataset.

We determined the optimal sampling depth
through examination of exploratory rarefaction curves
of observed species plotted against sampling depth
and the dataset was rarefied to 12 000 sequences per
sample. Samples with fewer reads were removed.
Alpha diversity metrics (chao1, PD, observed species)
were computed within QIIME. Distance matrices
were generated with the unweighted and weighted
UniFrac methods to compare the relative abundance
and presence/absence patterns between treatment
groups. Our beta diversity measures (between-sample
diversity) were computed with QIIME and jackknifed
by repeatedly sampling at 3000 sequences per sample.
Beta diversity was then plotted by principal coordi-
nates analysis with confidence ellipses generated
from the jackknifing procedure.

The heatmap was created from the log abundance
of all genera and classified by the Prediction Analysis
for Microarrays for the R package, which uses the
least shrunken centroid method (Tibshirani et al.,
2002). The ternary plot was created with ggplot2 in R.

Results

Soil microbiome composition
Soil microbiotas obtained from the root zone of
B. rapa and four A. thaliana genotypes grouped
together primarily by flowering time treatment and
controls. Figure 1 shows a heatmap of log absolute
abundance for all taxa. The samples grouped
specifically by EF, LF and control (C) treatments.
The ‘control’ serves as a profile of the surviving and
residual microbiota endemic in the soils after steam-
sterilization and without inoculation of additional
microbiota. Although the heatmap showed strong
clustering by treatment, eight samples were mis-
classified representing an error rate of 0.075.

Distribution of OTUs across samples revealed a
core microbiome with 60% of all OTUs shared
across flowering time and control treatment groups
(Figure 2a). The center of the ternary plot shows the
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core microbiome (high density of circles) across the
EF, LF and control treatments. The OTUs uniquely
associated with a specific treatment (where more
than 80% of the total abundance of a particular OTU
is uniquely associated with only one group) corre-
sponded to the points within the corners of the

ternary plot. The genera assigned to these OTUs fall
into a handful of key families (Figure 2b), with more
specific associations in Supplementary Table 1. The
bacteria most strongly associated with the EF
treatments include genera within two families with
many known plant pathogens (Xanthomonadaceae

Figure 1 Soil microbiota group together primarily by flowering time treatment and controls. Heatmap of log absolute abundance of all
taxa. Classification, dendrograms and order of samples and taxa were determined by the Prediction Analysis for Microarrays in the R
statistical package. The color key at the top left includes a frequency histogram of number of OTUs at each expression level. Vertical
columns represent samples mapping primarily into ‘Control’, EF and LF treatment groups. The ‘control’ serves as a profile of the
surviving and residual microbiota endemic in the soils after steam-sterilization and without inoculation of additional microbiota.
Although the heatmap showed strong clustering by treatment, eight samples were misclassified representing an error rate of 0.075.

Figure 2 Family-level taxa uniquely associated with EF/LF time groups and controls. (a) Ternary plot of OTUs showing the percent of
each OTU’s observations present in each group (EF, LF and Control) across different plant hosts. For example, a point’s position within
the ‘0.8’ triangle at the ‘EF’ corner of the ternary plot indicates that 80% of all observations of that OTU occur within the EF group.
Diameter of plotted points corresponds to relative abundance of the OTU. Compartments of the dotted grid correspond to 20%
increments. (b) List of taxonomy at the family level corresponding to OTUs of points falling within the 80% compartment of each group.
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and Pseudomonadaceae) and genera within three
families with members associated with nutrient
mineralization and substrate depolymerization
(Moraxellaceae, Cellulomonadaceae and Saprospir-
aceae) (Sarkar and Guttman, 2004; Xia et al., 2008;
Dodds and Rathjen, 2010; Rokhbakhsh-Zamin et al.,
2011). In contrast, the LF treatments were associated
with families that include plant-growth-promoting
bacteria (Iamiaceae, Alcaligenaceae and Corynebac-
teriaceae) and a family of bacteria (Verrucomicro-
biaceae) that are ubiquitous in soil but are poorly
represented through culturing methods (Altman and
Lawlor, 1966; Bertrand et al., 2000; Kurahashi et al.,
2009; Da Rocha et al., 2013.

Principal coordinates analysis of the unweighted
UniFrac distances showed separation of the trait-
associated microbiome treatments (EF vs LF) and
the control by microbial taxa (Figure 3). In contrast,
the weighted UniFrac analysis indicated no separa-
tion of flowering time and control microbiomes in
this study (Supplementary Figure S2). Although the
majority of soil studies place emphasis on the
relative abundance of taxa, to which weighted
UniFrac is sensitive, the multiple generations of
selection in this study may have led to the
enrichment of trait-associated rare taxa—meaning
abundant taxa alone may not drive the observed

differences in flowering time. Furthermore, patterns
of presence/absence can be obscured by the high
relative abundances of core microbiome taxa, mak-
ing unweighted UniFrac (insensitive to relative
abundance) better for elucidating these patterns
(Lozupone et al., 2011).

Effect of selected microbiomes on plant host traits
When the EF- and LF-associated microbiomes were
inoculated into soils containing novel plant hosts,
we found consistent responses in differences
between flowering times. All A. thaliana hosts
grown with LF-associated microbiomes flowered
15–17% later than plants containing the EF-asso-
ciated microbiomes. The related crucifer, B. rapa,
flowered 56% later in the LF treatments than in EF
treatments. The significant delays in flowering were
associated with increases in inflorescence biomass
of three of the four A. thaliana genotypes Col, RLD
and Be. Similarly, B. rapa, also showed delayed
reproduction and an increase in total aboveground
biomass in the LF-associated microbiome treatment
(Figures 4a and b).

Potential microbiome-mediated shifts in soil
environment
Soil microbial communities have a strong role in
biogeochemical processes that determine soil envir-
onmental parameters such as pH, mineralization
and nutrient availability (Burns, 1982; Allison and
Vitousek, 2005). We observed no significant changes
in soil pH between treatments and plant hosts,
which indicates that pH is not responsible for the
observed differences in plant growth and phenology.
Soil inorganic NH4

þ and NO3
� concentrations did

not differ across treatments, but any differences
generated from mineralization could be explained
by rapid immobilization in soil microorganisms and
plants. Although aboveground plant tissue N did not
differ across flowering treatment groups, it is
plausible that root tissue N differed (but root tissue
N was not measured in this study). The potential
soil extracellular enzyme activities associated with
N mineralization increased two- to fivefold in the LF
microbiome treatment over the EF microbiome
treatment (Figure 4c). Enhanced extracellular
enzyme activity can indicate increased microbial
coordination in the depolymerization of complex
substrates and release of bioavailable N or phos-
phorus (Schimel and Bennett, 2004; Allison, 2005).

Discussion

Although the mechanisms underlying the apparent
microbiome-driven shifts in flowering time are
unknown in this study, we speculate that microbial
modification of the soil altered a suite of environ-
mental cues controlling flowering time. Regulation
of flowering time is primarily driven by abiotic
factors, such as vernalization and photoperiod, but

Figure 3 Unweighted UniFrac distances show separation of the
EF/LF-associated microbiome treatments and controls by micro-
bial taxa. Principle coordinates analysis of unweighted UniFrac
distances generated from 16 S rRNA sequence data obtained from
the rhizosphere soils of the plant hosts. Unweighted UniFrac
distances are insensitive to relative abundance of observed OTUs
and instead reveal patterns and differences in the presence/
absence of taxa. Samples were rarefied to an even sampling depth
of 12 000 seqs per sample. The orange points refer to LF
microbiomes, the blue points are the EF microbiomes and the
red points are the control microbiomes. Percentages on each axis
represent the percent variation explained by the PCs.
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it is well known that stress and nutrient availability
also influence flowering time (Simpson and Dean,
2002; Amasino, 2010). The increase in A. thaliana
reproductive biomass and B. rapa total biomass
associated with the LF microbiomes points to
several possibilities that include changes in soil
resource pools altering flowering time, delayed
reproduction altering soil resource pools and accu-
mulated pathogens that contribute to early stress
flowering. In this study, the delay in flowering
corresponded to a 50–100% increase in host
reproductive or total biomass. Minor increases in
bioavailable N or other limiting nutrients could
result in the biomass gains observed in the plant
hosts particularly because the plants in this experi-
ment were grown under nutrient limitation.

The production of extracellular enzymes provides
a major mechanism by which microorganisms gain
access to limiting nutrients bound in soil organic
matter. Under N- or phosphorus-limiting conditions,
groups of microorganisms capable of producing
extracellular enzymes are able to capture N or
phosphorus that would otherwise be inaccessible
for biological uptake (Burns, 1982; Sinsabaugh,
1994; Sinsabaugh, 2010). These groups of micro-
organisms may include both bacteria and fungi,
although fungi were not specifically examined in
this study because of the lack of mycorrhizal
association in A. thaliana and less robust commu-
nity profiling methods. Plant rhizodeposition and
root exudates represent a potential catalyst needed
to prime the breakdown of complex polymers that
release mineralized N and phosphorus (Haichar
et al., 2008). Given this beneficial association, the
production of extracellular enzymes and their value
to the many organisms inhabiting the rhizosphere
represent a unique situation in which selective
pressures may encourage higher level coordination
between plants and their microbiome (Wilson, 1975;
Kerr and Godfrey-Smith, 2002; Okasha, 2009).

It is conceivable that the multi-generational
approach to microbiome assembly we used may
have led to the development of microbiomes in the
LF treatment that enhance N mineralization via
extracellular enzyme production. The resulting
increase in mineralized N could modulate nutrient
stress responses thereby favoring delays in bolting.
Reproductive delay in A. thaliana grown in low
phosphorus soils has been shown to increase
biomass by 30% presumably by allowing greater
time for soil phosphorus mineralization and root
exploration (Nord and Lynch, 2008). Similarly in the
study by Swenson et al. (2000), continuous selection
for high vs low biomass A. thaliana plants showed
changes in soil chemistry. By generations 13 and 14,
phosphorus was one of the major factors explaining
the separation of soil nutrients by low vs high host
biomass selection lines.

The ability to reproduce microbiome function in
novel plant hosts suggests that microbiome compo-
sition is also reproducible. However, inoculation of
a plant’s root-associated microbiome into the soils of
novel plant hosts does not necessarily lead to a
reassembly of microbial communities representative
of the inoculant. For example, legumes inoculated
with a mixture of rhizobial strains showed that
nodule formation with the effective strain was not
achieved uniformly across legume genotypes (Kiers
et al., 2007). In this study, we showed that the plant
trait-associated microbiomes developed over multi-
ple generations were able to assemble into distinct
community profiles by flowering time treatment
across novel plant hosts. Although the soils were
steam-sterilized to reduce viable microorganisms, a
small fraction of the community is still able to
persist as found in other studies (Lau and Lennon,
2011). In spite of the persistence, the inoculated
microbiomes were able to populate the soils of novel
hosts and induce plastic responses in flowering
phenology and soil function. While bacterial

Figure 4 Flowering time, reproductive biomass and potential extracellular enzyme activity show consistent changes across plant hosts.
(a) Days to flowering of each plant host after inoculation with EF and LF microbiomes. (b) Reproductive biomass for the A. thaliana
genotypes and total biomass for B. rapa. (c) Potential extracellular enzyme activity in soils across plant hosts. Enzyme activity associated
with N mineralization is represented by the sum of leucine aminopeptidase, N-acetyl glucosaminidase and phenol oxidase (Sinsabaugh,
2010). Enzyme activity is measured in nmol per gram soil per hour. Values reported are from a standard least squares regression model
including control values as a covariate (analysis of covariance). Plant host abbreviations correspond to B. rapa (BR) and the four
A. thaliana genotypes Rld (RLD), Ler (LER), Col-0 (COL) and Be (BE). Asterisks denote statistical significance at Po0.05. Error bars
represent s.e.m.
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sequencing was emphasized in this study as in other
plant microbiome-focused papers (Lundberg et al.,
2012; Bulgarelli et al., 2012; Peiffer et al., 2013),
fungi could have had a significant role in modulat-
ing flowering time, altering extracellular enzyme
activities and enhancing reproductive biomass.
Root-colonizing endophytic fungi and root-asso-
ciated fungi are able to modulate stress and enhance
plant growth in Arabidopsis and other hosts
(McLellan et al., 2007; Sherameti et al., 2008).
Although the multi-generation approach to enrich-
ing microbiomes is likely to favor bacterial popula-
tions, it is conceivable that certain fungi are
enriched across plantings assuming that fungal
hyphae were able to persist through the inoculation
procedure we used and establish in host tissues or
rhizospheres within the short lifecycle of the rapidly
cycling Brassicas.

Irreproducibility of microbiome function in Landsberg
Erecta
The A. thaliana genotype Ler showed microbiome
profiles consistent with the other plant hosts, but
was unable to show the same significant shifts in
flowering time, biomass and soil extracellular
enzyme activities. Genotypic variability within a
species can influence the composition of plant-
associated microorganisms. For A. thaliana, a study
conducted on eight genotypes in two different soil
types showed that genotype explained a small but
significant fraction of variation in the composition
of the endophytic microbiome (Lundberg et al.,
2012). Similarly, a study conducted on maize
genotypes showed that a similar fraction of variation
in rhizosphere microbial diversity was explained by
plant host genetics (Peiffer et al., 2013). In our study,
the lack of a significant response found in Ler to the
inoculated microbiomes could be related to varia-
tion in host genetics. In particular, Ler shows unique
genetic traits relevant to flowering regulation that
could contribute to a reduced ability to delay
flowering. For example, LF associated with the
FRIGIDA (FRI) gene is partially suppressed in Ler
and the suppressor allele found in Ler (FLC-Ler)
may constrain the expression of the LF phenotype
through inhibiting increases in Flowering Locus C
(FLC) expression (Michaels and Amasino, 2001).

Conclusion

We have shown that experimental selection on soil
microbial communities can alter major plant traits,
including flowering time. These trait-associated
microbiomes can then populate the soils of novel
hosts and reproduce their intended functions. The
ability of microbiomes to reproduce their effects on
soil processes and host plant traits is critical to
advancing the use of soil microbiomes in plant
production systems. Our findings from the

sequencing analysis indicate that rare taxa may have
important roles in plant trait development. Accord-
ingly, our results suggest that selection based on
diverse microbial communities holds strong poten-
tial for using microbiomes to address key agronomic
and environmental concerns.
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