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 Recognition of plant pathogens in leaves leads to dramatic 
changes in transcription, synthesis of defense phytohor-
mones and antimicrobial compounds, and elaboration of 
physical barriers (1, 2). Defense phytohormones are struc-
turally-diverse plant secondary metabolites that integrate 
plant immune system output responses while repressing cell 
growth and proliferation. Salicylic acid (SA), jasmonic acid, 
and gaseous ethylene mediate localized and systemic plant 
immune responses (3, 4). Non-specific systemic acquired 
resistance is mediated by SA in leaves (5). By contrast, in-
duced systemic resistance in leaves can be triggered by spe-
cific rhizobacteria colonizing roots, and is mediated by 
jasmonic acid and ethylene (4). SA and jasmonic acid act 
antagonistically in responses to infection by biotrophs, at 
least in leaves (6). The defense phytohormones control a set 

of overlapping signaling sectors, 
each contributing to regulation 
of plant defense via transcrip-
tional and biosynthetic output in 
leaves (7). 

Accessions of A. thaliana 
show variation in defense phyto-
hormone profiles after infection, 
even though they share similar 
root-associated bacterial micro-
biota (8–10). Previous studies 
examined the roles of defense 
phytohormones in shaping the 
wildtype root microbiome using 
single mutant lines defective in 
their biosynthesis or perception, 
or exogenous defense hormone 
application in combination with 
bacterial culturing and/or lower 
resolution profiling methods. No 
generalizable clarity has 
emerged to date (11, 12). We 
therefore compared the bacterial 
root microbiome of wildtype A. 
thaliana accession Col-0 with a 
set of isogenic mutants lacking 
biosynthesis of, and/or signaling 
dependent on, at least one of the 
following: SA, jasmonic acid, and 
ethylene. We focused on multi-
mutants that eliminated over-
lapping defense signaling sectors 
(Fig. 1A and table S1) (13). We 
anticipated that this experi-
mental design would reveal the 
contributions of plant defense 
phytohormones to wildtype root 
microbiome composition. 

We profiled bacterial com-
munities of rhizosphere (soil 

directly adjacent to the root) and endophytic compartment 
(EC) from roots grown in a previously characterized wild 
soil from the UNC Mason Farm biological preserve, as well 
as unplanted bulk soil (figs. S1 to S4; tables S2 to S4; Meth-
ods 1-3, 6a-d) (10). Sample fraction (soil, rhizosphere, or en-
dophytic compartment) and the differentiation of 
endophytic samples from bulk soil and rhizosphere ex-
plained the largest portions of variance across the bacterial 
communities examined (table S5) (8, 10). Endophytic bacte-
rial communities were less diverse than bulk soil and rhizo-
sphere communities (Fig. 1B, fig. S4) with reduced 
representation of Acidobacteria, Bacteroidetes, and Verru-
comicrobia, and enrichment of Actinobacteria and Firmicu-
tes (ANOVA, q-value < 0.05). Individual Proteobacteria 
families were either enriched or depleted in endophytic 
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communities compared to soil and rhizosphere samples (fig. 
S5; Method 6b). These results are consistent with distribu-
tions of bacterial phyla from A. thaliana roots grown in four 
wild soils (8, 10). 

Plant genotype affected phylum-level bacterial root en-
dophytic community composition (4.3-5.0%, Canonical 
Analysis of Principal Coordinates [CAP; (14); Fig. 1B; Meth-
od 4b and 6e] with both hyperimmune cpr5 and immuno-
compromised quadruple dde1 ein2 pad4 sid2 mutant 
communities displaying lower alpha-diversity indices than 
wildtype (Fig. 1B, fig. S4B; Methods 1b). The relative abun-
dance of Firmicutes was lower in immunocompromised jar1 
ein2 npr1, ein2 npr1, and npr1 jar1 mutants, which all lack 
response to SA (Fig. 1, A and B, and table S1). Actinobacteria 
were less abundant in cpr5 and pad4 endophytic samples, 
whereas Proteobacteria were more abundant in cpr5 and 
jar1 ein2 npr1 (Fig. 1, A and B; fig. S8; Methods 4a). Only 
mutants that lacked all three defense hormone signaling 
systems exhibited diminished survival that correlated with 
the presence of an unidentified oomycete in the root micro-
biota of survivors (fig. S2; Methods 3 g). 

We identified bacterial families and operational taxo-
nomic units (OTUs) in the root endophyte microbiome of 
each mutant plant line that were differentially-abundant 
compared to wildtype plants using a Zero Inflated Negative 
Binomial (ZINB) model (tables S6 and S7; fig. S9; Method 
6b). Both the number of differentially-abundant bacterial 
taxa and their identity differed in endophytic samples from 
mutants. Among 52 differentially-abundant families in sur-
viving dde1 ein2 pad4 sid2 mutant endophytic samples, 
nearly all were depletions (Fig. 1C and fig. S6), consistent 
with this mutant’s decreased alpha-diversity (Fig. 1B). Dif-
ferentially-abundant bacterial families are consistent with 
the significant relative phyla differences observed in specific 
defense hormone mutants (Fig. 1B and fig. S6A). In cpr5, for 
example, nine Actinobacteria families were identified with 
decreased relative abundance and 12 Proteobacteria families 
were identified with increased relative abundance, in com-
parison to wildtype (Fig. 1C, fig. S5, and table S6). These 
differences demonstrate that defense phytohormones modu-
late root microbiome composition at multiple taxonomic 
levels from phylum to family. 

We then compared the enrichment and depletion pro-
files across the mutant genotypes to identify shared patterns 
(fig. S6C; Method 6d). Two striking genotype groups were 
observed. (Fig. 1C). Group 1 mutants constitutively produce 
and accumulate SA while group 2 mutants either accumu-
late less, or cannot respond to it. These two genotype groups 
exhibited complementary patterns of differentially-
abundant Proteobacteria: in group 1 these were α-and β-
Proteobacteria, while in group 2 they were γ-Proteobacteria 
(table S6 and fig. S6A). Within genotype group 2, nearly all 
of the differentially-abundant bacterial families in sid2 were 
shared with pad4 and dde1 ein2 pad4 sid2, especially those 
families depleted compared to wildtype, while half of the 

dde1 ein2 pad4 sid2 depletions were apparently SA-
independent (Fig. 1D and fig. S6B). 

We re-analyzed the data to ask whether the differential 
family abundances observed in specific mutant groups re-
mained consistent at lower taxonomic (OTU) resolution (ta-
ble S4, tab B; table S7; Methods 6b). We largely re-
capitulated mutant groups 1 and 2 at OTU resolution (fig. 
S7B). If the plant selected bacteria at a low (genus or spe-
cies) taxonomic level, we would expect that only one or a 
few abundant OTUs would drive, and thus correlate with, 
family-level analyses. However, we observed that a number 
of OTUs from across the abundance range matched family-
level enrichment profiles (fig. S7C-F; Methods 6b). Im-
portantly, these results suggest that defense phytohor-
mones, particularly SA, modulate taxonomic groups of 
bacteria at the family level in the root, and not by altering 
the abundance of a small number of dominant strains with-
in each differentially abundant family. 

We next asked whether the bacterial families affected by 
the plant defense phytohormone mutants corresponded to 
taxa that were normally either enriched or depleted in 
wildtype roots compared to soil. We re-sequenced two re-
gions of the 16S gene for a subset of the samples using a 
different technology. This allowed us to eliminate sequenc-
ing and amplification biases. We identified 19 enriched and 
23 depleted families in endophytic samples of wildtype roots 
compared to soil (table S8; fig. S11; Method 6c). Consistent 
with phyla level analyses (Fig. 1B), 79% of the bacterial fami-
lies enriched in endophytic samples were Actinobacteria or 
Proteobacteria. Further, 55% of the endophytic-enriched 
families in SA mutants are Actinobacteria or Proteobacteria 
(table S6, S8). A similar pattern was observed in the OTU 
level analysis, where 42% and 48% of the endophytic-
enriched bacterial families contained at least one OTU that 
is further enriched in the phytohormone mutants (table S7, 
S8). 

Six of the 19 endophytic-enriched families (table S8) 
were depleted in the cpr5 mutant that constitutively produc-
es SA (table S6), suggesting that these six bacterial families 
are sensitive to SA or SA-dependent processes. Five different 
endophytic-enriched families (table S8) were further en-
riched in group 2 mutants that lack SA-biosynthesis and 
signaling (table S6). Thus, these five bacterial families are 
candidates for taxa whose colonization is normally limited 
by wildtype levels of SA and/or SA-dependent processes. In 
contrast, 12 of the 23 endophytic-depleted families (table S8) 
were further depleted in group 2 mutants, but not in group 1 
mutants. Hence, these endophytic-depleted families may 
require SA-dependent processes to maintain even their very 
low abundance in the wildtype endophytic compartment 
(tables S6 and S8). Thus, SA is required to modulate the as-
sembly of a normal root microbiome. In its absence, core 
root bacterial community composition is significantly al-
tered. However, these changes to the bacterial microbiome 
are not sufficient to alter survival of these mutants in this 
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particular wild soil. 
We asked whether bacteria isolated from roots can colo-

nize sterile roots in the context of a defined but complex 
synthetic bacterial community. We germinated surface-
sterilized seeds (wildtype and defense phytohormone mu-
tants) on a calcined clay substrate inoculated with a syn-
thetic community (SynCom) of bacteria (Method 5). Sixteen 
SynCom strains (table S9) were members of 10 families en-
riched in endophytic compartments of wildtype plants com-
pared to soil (table S8), and 18 strains matched family OTUs 
altered in plant defense hormone mutants (tables S6 and 
S9). Further, 21 of the 38 strains belonged to families that 
matched endophytic-enriched OTUs from a published cen-
sus of plants grown in wild Mason Farm soil (10). 

Both bulk soil and endophytic compartment microbi-
omes changed over eight weeks following SynCom inocula-
tion (Fig. 2A). Fourteen of the 38 SynCom strains were 
‘robust colonizers’ (fig. S13C; table S9; Method 6h). Six of 
these 14 are from families predicted to be endophytic-
enriched in roots from our Mason Farm soil census (Fig. 2B, 
overlapping black and orange circles; table S9), corroborat-
ing their ability to colonize roots. We identified six ‘SynCom 
EC-enriched’ isolates and eight ‘SynCom EC-depleted’ iso-
lates (Fig. 2C; table S4e; Method 6f). Five of the six ‘SynCom 
EC-enriched’ strains belong to families also predicted to be 
endophytic-enriched in roots from the Mason Farm soil cen-
sus (Fig. 2B; overlapping orange and red circles; table S9), 
supporting their categorization as endophytic compartment-
enriched families (table S8). Thus, (i) some but not all Syn-
Com isolates robustly colonized the endophytic compart-
ment of host plants in these mesocosms, (ii) the soil and 
endophytic microbiomes still differed in this context, and 
(iii) there was considerable overlap in enrichments and de-
pletions between the SynCom and wild soil colonization 
experimental platforms at the family level. 

Seven bacterial isolates were differentially-abundant be-
tween wildtype and the defense phytohormone mutants in 
the SynCom experiments (Fig. 3; Method 6f), including at 
least one representative from each of the four phyla present 
in the inoculum (table S9). Six of the seven isolates were 
either depleted (Streptomyces sp. #136, Chryseobacterium 
sp. #8, Pseudomonas sp. #50, and E. coli) or were sporadic or 
non-colonizers (Bacillus sp. #125 and Brevundimonas sp. 
#374). Four of these six overlapped with families predicted 
to be differentially-abundant across genotypes in our Mason 
Farm soil census (Fig. 3B and table S6). And six of seven (all 
except Bacillus sp. #125) were enriched in the defense phy-
tohormone mutants (Fig. 3C). The profiles of differentially-
abundant isolates in pad4 and sid2 mutants overlapped 
(Fig. 3C). These data integrate our SynCom experiments 
with our wild soil census and demonstrate increased abun-
dance in the SA deficient mutants of isolates that were ‘spo-
radic or non-colonizers’ across all wild soil endophytic 
samples. Thus, altering SA production and signaling in the 
host plant prevents it from fully excluding bacterial taxa 

that a wildtype plant shuns. 
Exogenous SA application to our SynCom experiments 

also affected bacterial community composition in both bulk 
soil and endophytic compartment samples (fig. S14A; table 
S5; CAP 0.3-1.5%; Methods 5b, 6e), consistent with rhizo-
sphere changes in plants treated with SA or JA (15, 16). Two 
isolates were enriched (Flavobacterium sp. #40, (Bacteroide-
tes) and Terracoccus sp. #273, (Actinobacteria)) and one de-
pleted (Mitsuaria sp. #370, (β-Proteobacteria)) in the 
presence of exogenous SA (table S9; fig. S14B,C; Method 6f). 
Terracoccus sp. #273 abundance was higher in both SA-
treated bulk soil and root endophytic samples (Fig. 4A), and 
its growth was enhanced by SA in liquid media (Fig. 4B; 
Method 5c), although its genome contains no obvious SA 
catabolism genes (taxon IDs in table S9). In contrast, 
Mitsuaria sp. #370 was depleted in endophytic samples 
treated with SA, and grew less well in its presence (Fig. 4, C 
and D). Streptomyces sp. #303 was weakly enriched in SA-
treated samples (Fig. 4E; q-value <0.07), grew on minimal 
media with 0.5 mM SA as a sole carbon source (Fig. 4F) and 
contains orthologs to a previously characterized Streptomy-
ces SA-degradation operon (fig. S14D; table S9). Thus, the 
broader effects of SA on microbiome composition consist of 
both direct and indirect effects on the physiologies of indi-
vidual community members from limited, specific taxa. 

We demonstrate that plant defense phytohormones 
sculpt the root microbiome in characteristic ways. Elimina-
tion of all three defense phytohormone signaling sectors 
results in abnormal microbial profiles in the root, which 
may be linked to lowered survival in a wild soil. SA, a key 
immune regulator in leaves, also modulates the composition 
of the root microbiome. Plants with altered SA signaling 
have root microbiomes that differ in the relative abundance 
of specific bacterial families compared to wildtype. It will be 
of interest to address whether and how the extra- and intra-
cellular plant immune system receptor systems further con-
dition root bacterial community composition. We demon-
strated that different bacterial strains could make use of SA 
in different ways, whether as a growth signal or as a carbon 
source. Thus, SA influences the microbial community struc-
ture on the root. This may occur by gating bacterial taxa as 
a consequence of SA function in homeostatic control of im-
mune system outputs, or via as yet undefined effects on mi-
crobe-microbe interactions and root physiology. Together, 
our results show that a central regulator of the plant im-
mune system, largely uncharacterized in the root, directly 
influences root microbiome composition. Our results could 
open new avenues for modulating the root microbiome to 
enhance crop production and sustainability. 
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Fig. 1. Defense phytohormone 
mutants have altered root 
bacterial communities 
compared to wild-type plants. 
(A) Jasmonic acid (JA), salicylic 
acid (SA), and ethylene mutants 
(names at left) derived from 
wildtype Col-0. Upward and 
downward black arrows at right, 
hyper- and hypo-immune 
mutants, respectively. (B) Phyla 
distributions were separated into 
sample fractions (Soil, Col-0 
Rhizosphere, R, or Endophytic 
Compartment, EC) and plant 
genotypes. Shannon Diversity 
indices are listed above each bar. 
* indicates a phylum significantly 
lower than Col-0 EC at p<0.001; # 
indicates a phylum significantly 
higher than Col-0 EC at p<0.05; ^ 
indicates that JEN, EN, and NJ 
Firmicutes relative abundances 
were significantly lower than Col-0 
EC at p<0.04; @ indicates 
Shannon Diversity Index 
significantly lower than Col-0 EC 
at p<0.001 (all ANOVA with post 
hoc Tukey test). (C) The phyla 
distribution (circles color-coded 
as in B) of bacterial families 
identified as either enriched or 
depleted in ECs of each mutant 
compared to Col-0. The number 
of families in each category is 
noted inside each donut. Groups 
defined by Monte Carlo testing of 
Manhattan distances. (D) Venn 
diagram showing the overlap of 
enriched (left) or depleted (right) 
Group 2 families from (B). 
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Fig. 2. A 38 member synthetic community 
recapitulates differentiated microbiome 
colonization. (A) PCA showing the inoculum (purple, 
diamonds), soil (grey squares) and endophytic 
compartment (EC;green circles) samples. (B) The 
overlap of synthetic community (SynCom) members 
that were Robust Colonizers of Col-0 EC (black), EC-
enriched (red), or matched EC-enriched families from 
the census of roots grown in wild Mason Farm soil 
(orange; from Fig. 1). (C) Hierarchical clustering and 
heat map showing percent abundance (log2 scale) of 
selected isolates. Sample clustering split by fraction 
(left), with EC samples grouping by biological replicate. 
Isolates are grouped by their presence in the majority 
of Col-0 EC samples (‘Robust colonizers’) or absence 
in the majority of Col-0 EC samples (‘Sporadic or non-
colonizers’). Isolates color coded to phyla as in Fig. 1. 
Isolates that were significantly more abundant (red 
arrows) or less abundant (blue arrows) in EC with 
respect to bulk soil are denoted along the top. 
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Fig. 4. Salicylic acid directly affects 
synthetic community isolates. (A) 
Terracoccus sp. (#273) reads from 400 
rarefied consensus sequences for: the 
synthetic community inoculum (purple 
diamonds), soil (grey squares), and 
endophytic compartment (EC) samples 
(green circles) from salicylic acid (SA) 
treated (open symbols) and untreated 
(closed symbols) plants. * indicates 
significantly different between sample 
treatments at p<0.006 by Mann-Whitney 
test. (B) Optical density of Terracoccus sp. 
(#273) grown in buffered 1/10 LB with 0 
(green), 0.125mM (blue), 0.25mM (purple) 
or 0.5mM (orange) SA added. (C) Mitsuaria 
sp. (#370) reads as in (A). ^ indicates 
significantly different between EC sample 
treatments at p<0.0001 by Mann-Whitney 
test. (D) Optical density of Mitsuaria sp. 
(#370) grown as in (B). (E) Streptomyces 
sp. (#303) reads. * indicates significantly 
different between EC sample treatments at 
p<0.001 by Mann-Whitney test. (F) 
Streptomyces sp. (#303) aggregates in 
liquid cultures, but grows on minimal media 
agar with 0.5mM SA as the sole carbon 
source. 

Fig. 3. Defense phytohormone 
mutants exhibit increased abundance 
of EC-depleted microbes. (A) Overlap 
of SynCom EC-depleted (from Fig. 2C) 
and SynCom isolates differentially-
abundant in defense phytohormone 
mutants (SynCom genotype 
differentially-abundant). No SynCom 
EC-enriched isolates (from Fig. 2, B and 
C) were affected by plant genotype. (B) 
Overlap of the same SynCom genotype 
differentially-abundant isolates from A 
compared to isolates present in the 
SynCom from families that were 
genotype differentially-abundant in the 
wild soil census (green circle) (from 
table S8). (C) Heatmap of isolates 
(color-coded by phylum as in Fig. 1) 
differentially-abundant between defense 
phytohormone mutants and Col-0. 
Greyscale shows the mean abundance of 
the corresponding isolate (rows) in the 
EC of a given genotype (columns). 
Genotype differentially-abundant 
families predicted as enriched or 
depleted by the ZINB model are boxed in 
red or blue, respectively (SI, Method 6f). 
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