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Abstract Root systems are a black box obscuring a
comprehensive understanding of plant function, from the
ecosystem scale down to the individual. In particular, a lack
of knowledge about the genetic mechanisms and environ-
mental effects that condition root system growth hinders
our ability to develop the next generation of crop plants for
improved agricultural productivity and sustainability. We

discuss how the methods and metrics we use to quantify
root systems can affect our ability to understand them,
how we can bridge knowledge gaps and accelerate the
derivation of structure-function relationships for roots,
and why a detailed mechanistic understanding of root
growth and function will be important for future agricultural
gains.
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INTRODUCTION

Despite long-term scientific interest, the genetic and
functional basis of root architecture remains obscured,
largely due to the difficulties in imaging and quantifying
roots and their interactions with the environment. To date,
only two genes have been reported that control root
architecture quantitative trait loci (QTL) in a crop plant,
Deeper Rooting 1 (Dro1) and phosphorous-starvation toler-
ance 1 (Pstol1) (Gamuyao et al. 2012; Uga et al. 2013). Both
can confer increased rice yields under drought and low
phosphorous, respectively, underscoring the enormous
potential of root systems to boost and stabilize crop yields
under stress. But these successes were the product of
intensive mapping and introgression efforts that began
years earlier (Wissuwa et al. 2002; Uga et al 2011), and
represent only a tiny fraction of the earth’s biodiversity for
root traits. Given projected global demand for crop products
and the negative consequences of climate change on
agriculture, the pace of discovery and translation must
dramatically increase (Tilman et al. 2002; Fedoroff et al.
2010).

Leveraging the vast amount of genetic variation identified
from high-throughput sequencing technologies will require
comparably scaled innovations in plant phenotyping tools
(Furbank and Tester 2011; USDANSF 2011). Image-based
phenotyping has enabled relatively high-throughput and
accurate measurements of roots, but despite an expansive
list of new and promisingmethods (Lobet et al. 2013), inherent

tradeoffs of each have greatly limited their individual power to
resolve the underlying genetics. The spectrum of tradeoffs
usually involves: (i) throughput allowing analysis of large
populations; (ii) realism of growth conditions (e.g., controlled
environments vs. field conditions); and (iii) information
content of the measurements (e.g., whole vs. parts of the
root system, young vs. mature plants, 2D vs. 3D, temporal
resolution and functional capacity). Genetically encoded
differences aside, the oft-cited phenotypic plasticity of roots
coupled with the variability of climate, soil and biotic
interactions pose additional challenges to the study of
roots in natural environments. While high-throughput, non-
destructive, whole-root system phenotyping in the field
remains a key conceptual goal, this reality is at best on the
distant horizon.

Since there is not a “one size fits all” method for root
phenotyping, any given data set can only represent some
limited aspect of phenotypic reality (Figure 1) (Bilder et al.
2009; Houle et al. 2010; Granier and Vile 2014; Chitwood
and Topp 2015). It is then important to consider how we
might bridge these information gaps when addressing a
particular question in our research. In this review we will
discuss how our understanding of root architecture and its
genetic basis is shaped in part by how, when and what we
measure; how we can identify and quantify the functional
attributes of root systems; and how we can use this
information to further our understanding of whole plant
function and root-environment interactions for agricultural
benefit.
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HOW DO WE KNOW WHAT WE KNOW
ABOUT ROOT PHENOTYPES?
Much of the foundation of what we know about the shape,
size and architecture of root systems growing in natural and
agricultural environments comes from John E. Weaver and
colleagues. Over decades of work, they refined methods for
excavating and documenting root systems to produce
elegant two-dimensional reconstructions (Weaver et al.
1922; Weaver 1926; Sperry 1935; Weaver and Voigt 1950;
Kutschera 1960; Bohm 1979). Traditional excavations and
related approaches such as soil coring and minirhizotron
tubes are still the state of the art for field root phenotyping
(Trachsel et al. 2010; Maeght et al. 2013; Wasson et al. 2014),
but require significant time, capital and human resources.
Even so the resultant data typically can only estimate limited
aspects of the root phenotype, and the overall root structure

must therefore be cautiously inferred (Figure 1) (Heeraman
and Juma 1993; K€ucke et al. 1995). With the goal of identifying
the genetic basis of root phenotypes in mind, new higher-
throughput, lower-effort approaches that capture accurate
information about root architecture and function are
warranted.

Numerous root phenotyping platforms have recently been
developed as novel or more powerful takes on existing root
and rhizosphere methodologies, as detailed in several recent
review papers (de Dorlodot et al. 2007; Neumann et al. 2009;
Maeght et al. 2013; Meister et al. 2014; Downie et al. 2015;
Kuijken et al. 2015). One important example is shovelomics,
which focuses on the high-information content of easily
accessed root crowns using standardized methods for
manually estimating developmental and architectural traits
(Trachsel et al. 2010). With enough labor this method is
scalable to very high throughput (1,000’s of plants at �100

Figure 1. The range of root architecture-related information captured by common field phenotyping methods
Top row portrays data indicative of each method. Bottom row portrays a 2D representation of the relative information captured
by eachmethod. (A) Phenotypic reality encompasses the entire 3D root structure through time (4D), including local root growth.
These data cannot currently be captured in the field, but can be approached for young plants in controlled environments. Shown
here is the time function generated by analyzing sequential 3D reconstructions representing seedling root growth, where
warmer colors indicate later time points. The growth of each root and its contribution to the geometry and topology of the
system architecture can be explicitly known in this way (Symonova et al. 2015). (B) Trench excavations are the gold standard for
field root phenotyping since, given sufficient labor, they can capture a relatively comprehensive 2D view of naturally occurring
architecture compared to othermethods. The related andmore sophisticated slab ormonolithmethods can theoretically extract
entire root systems in 3D; however, this information is not easily quantified, and due to the time and effort involved, the method
is rarely used in modern research. (C) Soil cores are a primary way to capture information relating root densities to depth for a
single time point in an essentially 1D sample, although multiple samples can be taken to infer coarse 3D geometry, but not
topology. (D) Minirhizotrons incorporate elements of time and depth to root density information, but are also essentially 1D and
limited to those roots that grow on the surface of the transparent tube. Similar to soil cores, they can be combined en masse to
infer coarse 3D geometry. (E) Root crown excavations, or “shovelomics”, capture an information-rich area of the root system
that contains the origins of the primary root axes. However, the roots are typically so dense that manual or optical methods can
only extract a portion of the geometric and topological information contained in the sample. Other methods, such as X-ray
computed tomography (see Figure 2), can improve this.
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plants per person, per day), but still requires trained eyes and
extracts only a fraction of the possible information contained
in the sample. However, the recent adoption of image-based
phenotyping for excavated root crowns provides a much
more information-rich data set from the same samples (Grift
et al. 2011; Bucksch et al. 2014; Colombi et al. 2015; Das et al.
2015), and one software package is now publically available on
a widely accessible computing resource (Das et al. 2015).
Indeed, a key aspect of many modern approaches is the
incorporation of image-based quantification methods
(Spalding and Miller 2013), and to some extent, automation
and robotics (Nagel et al. 2012; Subramanian et al. 2012; Slovak
et al. 2014). Image-based analysis has the enormous potential
to standardize the accuracy and precision of root phenotyping
through defined algorithms that are vetted against ground
truths, and to simultaneously broaden the metrics we use to
characterize roots, which will improve our power to map
genotype to phenotype. Evidence for this idea was
highlighted by Houle et al. (2010) (from the work of Liu
et al. 2010): Seven loci were known to control human eye
color, which is traditionally classified in either blue, green-
hazel or brown categories. However, quantification of
continuous hue and saturation space from digital images of
eyes identified additional axes of variation and three
additional loci controlling eye color (Liu et al. 2010). This
variation was hidden from previous studies, due solely to how
the eye color phenotype was measured.

Our ability to correlate laboratory and field data is
conditioned by the information content of what we
measure and how well we measure it
As we transition to similar new paradigms in our understand-
ing of root phenotypes, we can question how the limitations in
our ability to comprehensively measure roots affects what we
“know” about them (Pierret et al. 2005). It has been pointed
out in numerous works (Heeraman and Juma 1993; Wissuwa
et al. 2009; Wasson et al. 2012; Shrestha et al. 2014) that there
can be little correlation between root phenotypes collected in
controlled environments or fields, but to what extent does
how and which measurements we make affect these
conclusions? As a thought experiment we can consider a
trait such total root length (TRL). TRL may be highly heritable
as measured from seedlings in a lab-based imaging system,
but low when measured by excavation or coring of mature
plantswith identical genotypes in some field setting. There are
a large number of developmental, physiological and environ-
mental interactions that could contribute to this difference,
but it is also true that from 2D images or 3D models we can
explicitly measure the length (and much more) of the entire
root system, whereas from the field we can only extrapolate
the total root length from the portion of the roots that were
recovered and accurately measured after sampling and
washing (Figure 1). Our ability to consistently repeat the
controlled environment experiment with great precision and
accuracy is high, but may be quite low in the field, especially
among the multitude of possible field settings. If we could
measure roots ofmature plants in any field settingwith similar
efficacy as in a lab, we might find a stronger heritable
component of the phenotype, and a much higher correspon-
dence between controlled environment and field data, at least
for some cases.

Despite biological and methodological complexities, there
are several lines of evidence that suggest strong lab to field
correspondences can be drawn for root phenotypes that
relate to agricultural productivity (Tuberosa et al. 2002a;
Khowaja et al. 2009; Wishart et al. 2012; Hufnagel et al. 2014).
The identification of the Dro1 QTL in rice was identified
through low-tech “basket assays” (Uga et al. 2011), and the
subsequent cloning and characterization of gene function
relied on Petri-dish based seedling root gravitropism mea-
sures (Uga et al. 2013). Similarly, the phenotypic effects of
Pstol1 underlying the phosphorus uptake 1 (PUP1) QTL in rice
were eventually characterized from controlled environment
pot and molecular assays (Gamuyao et al. 2012). It is easily
envisioned that eitherDro1 or Pstol1 could have been identified
de novo via modern high-throughput root screens that
measure cellular growth dynamics in real time (exemplified
in Meij�on et al. 2014). In related work, direct genetic linkages
were drawn between causative single nucleotide polymor-
phisms (SNPs) in Pstol1 sorghum homologs for quantitative
variations in seedling 3D root architecture measured from
gels and with yield in low-phosphorous field settings
(Hufnagel et al. 2014). While these successes may to an
extent reflect the large effect sizes on the quantitative traits
used for characterization, there is reason for optimism that
subtler phenotypes that are robust across lab and field studies
may be captured as our phenotyping and analytic methods
improve.

New and more nuanced phenotypes will contribute to our
understanding of root architecture and its genetic basis
Apart from directly comparable lab to field measurements
such as TRL, there are aspects of root phenotype that are
currently not possible to measure using field-based or manual
methods. One example is circumnutation, the helical growth
of roots relative to the growth environment, which may help
us to understand endogenous strategies plants use for
resource foraging. Measuring circumnutation requires imag-
ing that captures both temporal and 3D space (e.g., Clark et al.
2011), and thus precludes most field and even lab-based
approaches. The ability to resolve the growth of each
individual root in the context of the entire root system also
promises to advance our understanding of the relationships
between local and systemic growth patterns, and their
conditioning by internal and external signals (Moore et al.
2013; Symonova et al. 2015). With these tools we can begin to
answer questions about how local growth behavior at each
root tip contributes to the overall root architecture, and how
such information is processed system wide, which would
provide valuable data for modelling. Similarly, as we develop
finer-grained appreciation for the roles of specific root types in
root function and environmental interactions (Clark et al. 2011;
Chochois et al. 2015; Gutjahr et al. 2015; Yu et al. 2015), the
context of how much and how well we measure will gain
importance. The benefits for quantifying many aspects of root
architecture have been borne out by studies employing
machine learning to compare several genotypes of either rice
(Iyer-Pascuzzi et al. 2010) or maize (Zurek et al. 2015). In both
studies, an array of shape descriptors was used to quantify
aspects of each root system, but the descriptors that
delineated any given pair varied depending on the genotype
and developmental time. Similar to human eye color (Liu et al.
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2010), the ability to measure many potentially subtle differ-
ences in phenotype can have direct implications for our
understanding of the genetic basis of root architecture� new
large-effect QTLs were identified in a rice mapping population
using a multivariate approach that were absent when queried
with single univariate traits (Topp et al. 2013). In general, the
more complex the system, the more the information content
of our measurements is likely to be important for our
comprehension of the effects of phenotype and its environ-
mental and temporal control.

HOW CAN WE USE A GROWING BODY OF
KNOWLEDGE ABOUT ROOT
ARCHITECTURE TO UNDERSTAND ROOT
AND WHOLE PLANT FUNCTION?
As we are increasingly able to describe and quantify root
architecture, so will we increasingly understand how plants
function as integrated systems. Since the resources that roots
forage are distributed heterogeneously in time and space, it
stands to reason that numerous functional links should exist
between root growth/architecture and the elemental, meta-
bolic and physiological attributes of crop plants. Yet few of
these key connections have been conclusively demonstrated.
Spotlighting this black box, we have even a poor understand-
ing of how root, soil and hydrological processes interact to
drive the basic root function of water and nutrient uptake
(Zarebanadkouki et al. 2014).

Leveraging genetic resources to generate structure-function
relationships

One way to connect structure and function is to start from
germplasm with known contrasting agronomic qualities that
are likely related to root architecture and growth, and work
back to identify a genetic and/or mechanistic basis. Recent
studies concerning the role of roots in planting density
adaptations that have driven gains in US maize yields over
the past 80 years (Hammer et al. 2009; York et al. 2015) have
identified one such fertile research area. Using hybrids that
span a historical continuum of maize breeding lines, York et al.
(2015) uncovered specific architectural attributes that may
have contributed to enhanced crop performance at high
density. Employing a similar approach with populations bred
solely and continuously for high yield at increasing plantdensity
may provide a crucial resource to identify the genetic targets of
this artificial selection process (Brekke et al. 2011a, 2011b).
Similarly, the Illinois Long-Term Selection experiment could
provide an opportunity to make functional links between
nitrogen uptake and root architecture (Moose et al. 2004).
Over more than 100 years of recurrent selection for (nitrogen-
rich) protein content of seeds, the high-protein lines have
acquired superior N-uptake capacity compared to low-protein
lines (Uribelarrea et al. 2007). These changes are presumably
related in part to adaptations of root architecture. Thus the
development of multiple intermated recombinant inbred line
populations should provide for “high-resolution” mapping of
the genetic basis of nitrogen uptake and other traits related to
strong, directed selection for seed protein content (Lucas et al.
2013).

Combining above- and below-ground measurements will
lead to a more comprehensive understanding of plant
phenotype
Integrating shoot and root phenotyping in the same experi-
ments will extend our ability to link roots to their functional
attributes, especially when combined with powerful genetic
resources. The combination of in-depth root analyses with the
vast number of emerging high-throughput, high-information
content aboveground phenotyping methods (e.g., Andrade-
Sanchez et al. 2014), could greatly improve our understanding
of whole-plant function. A major target in this area would be
to identify fast aboveground measurements that robustly
reflect root phenotypes. Although crop canopy temperature
is often used as a coarse proxy for root function, these
associations are typically weak and are not necessarily
predictive outside of a given experiment (e.g., Wasson
et al. 2014). One particularly intriguing combination is
combined analysis of root traits with the elemental content,
or ionome, of shoot tissues. Since non-carbon elements of
plants are largely provided through the root system, links
between root architecture and ionomes could highlight
functional relationships with roots and soil conditions
(Baxter and Dilkes 2012). Using high-throughput phenotyping,
an Arabidopsis leaf ionome has been shown to effectively read
out plant physiological status (Baxter et al. 2008), and maize
seed ionomes were shown to be sensitive indicators of
different plant growth environments (Baxter et al. 2014).
Regardless of the approach, ground truthing methods that
determine the accuracy of the associations with hi-fidelity,
comprehensive above- and below-ground measurements will
be critical.

Advanced imaging tools can be used to integrate molecular,
metabolic, physiological, and micro and macro
morphological information in situ
The cutting edge of plant phenotyping technology is now
providing otherwise unobtainable views of plant structure-
function. The advent of fluorescence-based, genetically
encoded biosensors offers a new paradigm for studying
fundamental metabolic and physiological processes in situ,
including the dynamics of primary metabolites, such as sugar
compounds and hormones, that drive whole-plant physiology
(Chen et al. 2010; Waadt et al. 2014). Imaging methods
originally developed for medical and industrial purposes are
also being used for plant imaging to great effect. Neutron
imaging and X-ray tomography (XRT), which respectively use
the heterogeneity in neutron or X-ray-attenuating properties
of the target to form contrast images, have already generated
advances in our understanding of plant structure-function
relationships. Both can image roots in opaque substrates,
including field soils (Figure 2). Neutron imaging is particularly
well suited to quantify the dynamics of water uptake by root
systems, as deuterated (heavy) water can be injected and
directly tracked (Moradi et al. 2008; Warren et al. 2013;
Zarebanadkouki et al. 2013; Zarebanadkouki et al. 2014). X-rays
have been used for much longer to analyze root and soil
structures and the interface between them. Analyses range
from micro-scale interactions such as root-hair-rhizosphere
and root-soil-particle interactions, to macro-scale interactions
of root/ systems focused on root-root, and root-nutrient
interactions at an architectural level (Pierret and Moran 1996;
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Moran et al. 2000; Kaestner et al. 2006; McCully et al. 2010;
Mooney et al. 2011; Metzner et al. 2015; Pfeifer et al. 2015).
Additionally, XRT can be used to generate detailed informa-
tion about whole-plant morphology, both internally and
externally, at multiple spatial scales, either in situ, or after
destructive sampling (Figure 2). Magnetic resonance imaging
(MRI), which relies on the radio waves generated by physical
interactions with magnetic fields to generate images, has also
been effectively used to study root structure, growth
dynamics, and water content in situ (Jahnke et al. 2009;
Schulz et al. 2012; Metzner et al. 2015). Finally, positron
emission tomography (PET) is a powerful and versatile
functional imaging modality that can be used to study
whole-plant dynamics in living specimens. PET generates high-

resolution images in real time by detecting characteristic
emissions from tracers that incorporate high-energy radio-
isotopes. The tracers can be particular plant metabolites such
as hormones and sugars, or raw materials such as carbon
dioxide, water and nitrate, and introduced to the plant via
direct application, photosynthesis (for CO2) or root uptake
(Kiser et al. 2008; Suwa et al. 2008; Jahnke et al. 2009;
Tsukamoto et al. 2009; Kanno et al. 2012; Lee et al. 2013; Wang
et al. 2014; Karve et al. 2015; Pankievicz et al. 2015). When
combined with XRT, MRI or optical imaging, PET can directly
measure structural-functional relationships (Figure 2) (Jahnke
et al. 2009).

However, employing these advanced imaging technolo-
gies effectively for plant research faces numerous obstacles.

Figure 2. Advanced imaging technologies will help elucidate relationships between root architecture, physiology and function
(A–C) In situ X-ray computed tomography (XRT) analysis of cassava storage root growing in a ca. 3 inch opaque pot with soil
substrate. (A) Raw XRT reconstruction. The scan took ca. 5min at 110 micron resolution. (B) Segmented 3D root reconstruction,
ready for quantitative analysis. Fine root structure was intentionally left out. (C) Excavated and washed root sample. (D) XRT
reconstruction frommaize root crown excavated from a field and washed (akin to panel E in Figure 1). The scan took ca. 2min at
110 micron resolution. (E) A digital cross-section of the same root as in D showing internal morphological information. (F) XRT
reconstruction of a sorghum inflorescence. The scan took<5min at 114 micron resolution. Many features, such as seed number
(n¼ 661), were instantaneously quantified in the intact sample. (G) A digital cross-section of the inflorescence in F showing the
complex branching architecture otherwise hidden from optical methods. (H) Combined optical projection tomography - positron
emission tomgraphy (OPT-PET) data set from amaize seedling pulse labelledwith 11CO2 gas for 10min. Color data are quantitative
representations of the presence of carbon-containing photosynthates, where warmer colors equal more carbon. Greyscale
information was generated from 3D optical imaging and represents the root morphology. Note that not all roots, or all parts of
roots, co-localize with carbon signal because these data are a snapshot of dynamic carbon allocation patterns in the maize root.
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With the exception of X-ray computed tomography, which is
finding its way into the hands of more and more plant
researchers, most of these technologies require close
partnerships with physicists at national labs or medical
schools to conduct experiments. Much more investment in
plant research and growth infrastructure at these institutions
will be needed to incentivize highly productive relationships
that can truly approach fundamental questions in plant
biology in new ways. Regardless of where the information
comes from, robust modeling frameworks that incorporate
mathematical, statistical and signal processing theory will be
absolutely essential to linking root architecture and function
(Rengel et al. 2012; Granier and Vile 2014). Although there are
many bridges to build among basic and applied research
communities in order to assemble the right mix of expertise
within a team or collaborating groups, the potential is
enormous to reveal fundamental information about the ways
root and shoot systems are integrated.

WHAT ARE THE IMPLICATIONS FOR
UNDERSTANDING THE GENETIC BASIS OF
ROOT TRAITS VERSUS BREEDING FOR
THEM DIRECTLY OR FOR YIELD IN
TARGET ENVIRONMENTS?
Given the incredible difficulties in capturing, assessing and
assigning function to root architecture traits, it is reasonable
to ask if alternativemethodswill better achieve improved root
systems for agriculture. Over the past century, strong artificial
selection for aboveground traits combined with improved
agricultural practices and inputs have greatly contributed
to steadily rising crop yields in advanced farming systems
(Duvick 2005; Ciampitti and Vyn 2012). During this time,
improved root traits have undoubtedly, if indirectly, been
selected for (e.g., Hammer et al. 2009; York et al. 2015).
However, understanding the extent to which these improve-
ments are limited to target breeding environments and
resource-intensive management practices will be important
to sustainable crop development in future climate change
scenarios, and dually for low-input practices that a majority of
the world’s farmers employ.

Genetic bottlenecks may limit the possibilities for crop
improvement under traditional breeding schemes
Recent large-scale studies underscore the importance of roots
in global agriculture and ecology (Warren et al. 2014; West
et al. 2014). A meta-analysis of Midwest U.S. crop production
over the past few decades came to the striking conclusion
that at the field scale, maize has become more sensitive to
vapor pressure deficit-driven drought stress during modern
breeding (Lobell et al. 2014). Similarly, despite the fact that
maize agricultural hybrids have become increasingly more
nitrogen use efficient (NUE), Gallais and Coque (2005) posited
that modern cultivars may have lost root growth-related
plasticity responses important for nitrogen uptake efficiency
(NUpE) due to their typical selection under high-N inputs. This
idea was supported by the findings of Chen et al. (2013), and
has important implications for future development of
precision and low-input agricultural schemes. A comparison

of green-revolution wheat cultivars with a global sampling of
modern landraces found that these cultivars have substan-
tially smaller root systems than landraces (Waines and Ehdaie
2007), which may limit stress resilience in low-input systems.
Analysis of teosinte landraces (Burton et al. 2013) and the
effect of mutations in the major Teosinte Branched 1 (Tb1)
domestication gene on maize root architecture came to
similar conclusions (Gaudin et al. 2014). But most critically, it
should be pointed out that most of the major genes/alleles
conferring stress tolerance through root function have been
found outside the predominant breeding germplasm. In the
case of the PUP1/Pstol1 low phosphorous tolerance trait,
the gene was identified from the aus-type Kasalath landrace
native to Northeast India and is apparently not present in the
two dominant rice breeding varieties Nipponbare (japonica-
type) and IR64 (indica-type) (Gamuyao et al. 2012; Schatz et al.
2014). For Dro1, a 1 bp mutation was identified in the IR64-
derived breeding lines that conferred shallow roots and
drought susceptibility, but not ancestral landraces or wild
rice (Uga et al. 2013). Further, the salt-tolerance gene
TmHKT1;5-A was found in a relative of durum wheat (Munns
et al. 2012). Taken together, these lines of evidence point to
our general ignorance of the effects of domestication-related
bottlenecks and strong selective pressure for desirable
aboveground traits (Wissuwa et al. 2009; Hufford et al.
2012) on root architecture and function. Roots that may be
highly functional in current intensive agricultural settings may
perform poorly or even maladaptively in low-input and future
climate change scenarios. Thus, working solely within elite
breeding germplasm is unlikely to effectively exploit the
wealth of natural genetic variation at our disposal (Wissuwa
et al. 2009).

Identifying the genetic and mechanistic basis of root traits
will improve our understanding and ability to manipulate
ideotypes, tradeoffs and plasticity to accelerate agricultural
improvement
C. M. Donald laid out the concept of ideotype breeding in 1968
(Donald 1968) as direct selection for certain model plant
characters that contribute to yield (rather than yield itself, or
elimination of yield defects). A central pillar of ideotype is that
plant characters are selected to suit their prevailing
environment. Not surprisingly, Donald had little to say about
what traits a model root system would possess, but with
knowledge accumulated 50 years since, the idea of “matching
roots to their environment” has greatly advanced (White et al.
2013).

Indeed, there have been numerous recent successes in
breeding specifically for root traits related to stress tolerance
and resource use efficiency, particularly in common bean,
soybean, maize, wheat and rice (Zheng et al. 2000; Zhu et al.
2005; Zhu et al. 2010; Beebe et al. 2006; Kirkegaard et al. 2007;
Ao et al. 2010; Lynch 2011; Gregory et al. 2013; Miguel et al.
2013; Saengwilai et al. 2014a, 2014b; Wasson et al. 2014; Zhan
and Lynch 2015). These and other works (Blum 2005; Rose
et al. 2013) have also highlighted the importance of
understanding the complex relationships between root
form, function and their environmental interactions. In
some environments, there are dual benefits for a single trait,
such as steeper root angles in Dro1-NIL plants, which may
confer both drought tolerance and decreased cadmium
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uptake (Kitomi et al. 2015), or aluminum and low-P tolerance in
sorghum (Leiser et al. 2014). Recent experiments in common
bean clearly demonstrated that the synergism between
multiple root traits can depend on placement and timing
(Miguel et al. 2015). Specifically, root hairs can increase P
uptake much more when co-localized with shallow roots, and
vice-versa, since P is largely bound in superficial topsoil layers
(Lynch and Wojciechowski 2015; Miguel et al. 2015). Thus,
breeding for either of these two traits alone is far less efficient
than together. Conversely, for a crop such as rice that is
particularly susceptible to drought in many agricultural
scenarios, the shallow-rooted trait shown to be beneficial
for P uptake has a strong negative tradeoff (Ho et al. 2005).
The concept of a dimorphic root system that has a percentage
of shallow P-obtaining roots and a few deep roots for water
uptake, would then become a valuable ideotype (Ho et al.
2005).

One criticism of the ideotype paradigm is that it is not
comprehensive, that is it does not explicitly take into account
the morphological, physiological and genetic relationships
between traits of interest, and thus may be difficult to employ
successfully in a breeding program (Rasmusson 1987; York
et al. 2013). Clearly there are opportunities for positive and
negative tradeoffs to plant productivity when intentionally
breeding or modifying root traits, so how best to account and
predict for them? Functional structural plant modeling is an
accelerating framework on which to assemble a rapidly
growing body of knowledge about plant growth characters
and functional interactions with soil resources (Pierret et al.
2007). This approach models resource availability within the
plant, and the consequences of growth “decisions” on
the whole plant to generate a explicitly quantifiable
hypothesis. Reinforcing the concept that more is not always
better, a recent modeling study suggested an intermediate
branching density for maize lateral roots was optimal for N
and P uptakes (Postma et al. 2014), and similar studies suggest
negative consequences for very dense crown roots
(Saengwilai et al. 2014b). In these cases, the modeling
predictions correlated well to the extent they were tested
in the field. Yet models can only be as good as their
assumptions, and the parameter values derived from them are
unlikely to be hard targets for breeding until we know much
more about relationships for whole-plant structure, function
and environment.

Root growth plasticity per se is likely to be an ideotype of
great value for efficient resource capture in a wide diversity of
environments. Classic experiments demonstrated the ability
of crop and wild plants to redistribute subterranean carbon
resources to exploit soil nutrient patches (Drew and Saker
1975; Jackson and Caldwell 1989; Robinson et al. 1999; Watt
and Evans 1999). However, while plasticity may be directly
bred for, the highly heterogeneous and multivariate nature of
field environments are likely to hinder the scope of application
for any one plasticity trait. Therefore, to fully harness root
plasticity for agriculture will require very detailed information
about its mechanistic and genetic basis, as well as its
environmental conditioning and tradeoffs. A body of work
in Arabidopsis on agar plates has identified apparent plasticity
genes that control the “tunability” of root architecture in
response to nutrient availability (Zhang and Forde 1998;
Svistoonoff et al. 2007; Ruffel et al. 2011; Gifford et al. 2013;

Gruber et al. 2013; Rosas et al. 2013; Araya et al. 2014;Yu et al.
2014), and a recent groundbreaking study identifiedmolecular
signals that integrate local root nutrient sensing with shoots
and reciprocal control of root growth (Tabata et al, 2014).
Continued development of in vivo nutrient sensors (Chen et al.
2010; Waadt et al. 2014), imaging systems that connect gene
expression with morphological change (Busch et al, 2012;
Grossmann et al. 2012; Rellan-Alvarez et al. 2015) and
technologies to quantify carbon allocation dynamics in
real time (Lee et al. 2013; Wang et al. 2014; Karve et al.
2015) can be expected to provide critical information about
the molecular mechanisms of root-environment response and
growth.

Breeding for root traits directly or indirectly will continue
to drive crop improvement into the foreseeable future.
However the discovery of genes underlying critical quantita-
tive traits such as Pstol1 in rice, and the SbMate family of
aluminum tolerance transporters in sorghum (Magalhaes
et al. 2007), have already spurred identification of their
orthologs in other species for a more efficient crop
improvement trajectory than could be achieved by trait
selection-based breeding (Mickelbart et al. 2015). Novel
phenotyping technologies for roots will eventually allow
plant breeders to more effectively breed for specific root
ideotypes tailored to their target environments, while at the
same time allowing researchers to unravel the genetic
mechanisms and variation controlling them.

HOW CAN WE GENERATE A MORE
COMPREHENSIVE VIEW OF ROOT
SYSTEMS AND DEVELOP GOOD MODELS
FOR WHOLE-PLANT FUNCTION?

Speaking the same language would help: The Root System
Markup Language (RSML) is an XML-based format for
describing topological and geometrical features and associ-
ated metadata of root phenotypes that constitutes a major
step in this direction, as it provides a common translator for
multiple root phenotyping software and allows for compar-
isons of traits measured from different sources (Lobet et al.
2015). OpenAlea is another flexible open source framework
that uses visual programming for structural-functional plant
modeling at scales from subcellular to whole plant (Pradal
et al. 2008). Structure-function and other modeling frame-
works such as deformable domains are a most powerful way
to integrate multivariate data and generate testable hypoth-
eses for the real world (Lynch et al. 1997; Pag�es 2006; Dupuy
et al. 2010; Leitner et al. 2010). Critically, such models
incorporate time and multiple physical scales so that the
aggregate shapes arising from the cumulative growth
decisions of each meristem in the root system can be
compared to empirically measured architectures. There is
enormous potential to inform growth modeling parameters
with experimental evidence from multiple sources, for
example gene expression, hormone, nutrient and carbon
flux, cell patterning and ontogenic information, as well as
external features of the environment such as nutrient
gradients and bulk water flow, soil physical parameters and
microbial interactions (Pierret et al. 2007; Draye et al. 2010;
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Dunbabin et al. 2011; Dunbabin et al. 2013). As increasingly
well-parameterized models become more powerful, a key
goal will be to link models of individual plant function to field
and ecosystem scales (Norby and Jackson 2000; Kell 2012;
Brown et al. 2014; Warren et al. 2014). However, modelling
should be approached cautiously, and a consideration of
scalar and dimensional interactions when combining multivar-
iate traits is important (Niklas 1994; Vignaux and Scott 1999).
The relationships among traits can change with physical and
temporal scale (allometry), and this change is not always
easily detected or well portrayed by regression models,
especially when traits are measured in different dimensions
and with different units. Dimension analysis, widely used in
the physics and engineering fields, allows models to be
checked for dimensional consistency by breaking derived
traits (i.e., area, density, rate) down into basic units of
measure (i.e., length, mass, time, amount) so thatmultivariate
relationships can be compared at a fundamental level (Niklas
1994; Vignaux and Scott 1999).

Ultimately, there is no substitute for the power of genetics
in relating genotype to phenotype, and we can use
comparative genetic architecture to bridge data from
different root phenotyping experiments. The most robust
QTLswould be shared acrossmultiple environments, different
methods of trait quantification, or even across plant
development, and could form a knowledge base from which
to explore genes controlling more specific interactions of
roots with environments. Focusing on a core mapping
population or other sets of germplasm will make these direct
comparisons more feasible. MetaQTL analysis has also been
effectively used to combine different QTL experiments for
higher confidence or resolution, and can provide clues to the
contribution of roots to more complex traits such as yield and
drought tolerance (Tuberosa et al. 2002b; Veyrieras et al.
2007; Courtois et al. 2009; Khowaja et al. 2009). Furthermore,
since image-based analysis allows for the instant quantifica-
tion of multiple aspects of root architecture from many
samples, root phenotypes can now be defined with
multivariate functions that exploit trait covariance informa-
tion. Suchmultivariate phenotypes can be defined by principal
component analysis, multivariate analysis of variance, or
otherwise. Multivariate trait mapping has been used to
identify new regions of the genome that were not identified
from QTL analyses with a priori defined univariate traits
(Anderson et al. 2011; Topp et al. 2013; Dixit et al. 2015;
Marquez and Houle 2015). Finally, as we develop dynamic
growth analysis tools that allow us to quantify how
phenotypes change over time, we can begin to explore the
genetic basis of infinite-dimensional, or function-valued traits
that describe phenotypic characters as continuous equations
rather than static values (Kirkpatrick and Heckman 1989;
Stinchcombe and Kirkpatrick 2012; Kwak et al. 2014;
Kwak et al. 2015; Bac-Molenaar et al. 2015). These methods
have been developed in the ecology and evolution fields,
but are now just starting to be applied to plant trait
mapping in conjunction with advances in phenotyping
throughput and automation. Considering phenotype in this
way has transformative potential for our understanding of
allometric growth, plant-environment interactions such as
plasticity, and the dynamic relationships between root form
and function.

CONCLUSIONS
One of the most significant challenges of our time � to
generate more yield with less input in rapidly changing
environments�will rely on advances in our ability to explicitly
manipulate plants, and thus to harness the genetic and
phenotypic diversity of root architecture. While the obstacles
to studying roots posed here and in other thoughtful works
are well known, there is much evidence that our collective
efforts are paying off with new and accelerating knowledge of
root architecture at functional and genetic resolutions.
Eventually a scenario can be envisioned where we can use
short-term and highly localized predictions of weather and soil
conditions to guide a targeted approach to rapid breeding or
synthetic biology using ideotype or other modules for crop
improvement (Brown et al. 2014). Data-driven model parame-
terization of plant function across scales is a daunting but
critical aspect to this vision of the future (Hammer 2004).
Ultimately, supporting terrestrial scale models with quality
empirical data (Warren et al. 2014) will help us to effectively
identify and address current and future leverage points in
global food security (West et al. 2014).
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