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Abstract 21 

The default growth pattern of primary roots of land plants is directed by gravity. However, roots 22 

possess the ability to sense and respond directionally to other chemical and physical stimuli, 23 

separately and in combination. Therefore, these root tropic responses must be antagonistic to 24 

gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and 25 

Arabidopsis roots has been previously described. However, which cellular signals underlie the 26 

integration of the different environmental stimuli, which lead to an appropriate root tropic 27 

response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-28 

sensitive fluorescent dye Dihydrorhodamine-123 and confocal microscopy, a transient 29 

asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at 30 

the distal elongation zone (DEZ), was built in the first two hours of the gravitropic response and 31 

dissipated after another two hours. In contrast, hydrotropically-responding roots show no 32 

transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant 33 

ascorbate, or the ROS-generation inhibitor Diphenylene iodonium (DPI) attenuated gravitropism 34 

while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 (APX1) 35 

showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase 36 

RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices 37 

(tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation 38 

attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-39 

directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic 40 

responses by promoting gravitropism and negatively regulating hydrotropism. 41 
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Introduction 43 

Plants evolved the ability to sense and respond to various environmental stimuli in an integrated 44 

fashion. Due to their sessile nature, they respond to directional stimuli such as light, gravity, 45 

touch and moisture by directional organ growth (curvature), a phenomenon termed tropism. 46 

Experiments on coleoptiles conducted by Darwin in the 1880s revealed that in phototropism, the 47 

light stimulus is perceived by the tip, from which a signal is transmitted to the growing part 48 

(Darwin and Darwin, 1880). Darwin postulated that in a similar manner, the root tip perceives 49 

stimuli from the environment, including gravity and moisture, processes them and directs the 50 

growth movement, acting like “the brain of one of the lower animals” (Darwin and Darwin, 51 

1880). The transmitted signal in phototropism and gravitropism was later found to be a 52 

phytohormone, and its redistribution on opposite sides of the root or shoot was hypothesized to 53 

promote differential growth and bending of the organ (Went, 1926; Cholodny, 1927). Over the 54 

years, the phytohormone was characterized as indole-3-acetic acid (IAA, auxin) (Kögl et al., 55 

1934; Thimann, 1935) and the 'Cholodny-Went' theory was demonstrated for gravitropism and 56 

phototropism (Rashotte et al., 2000; Friml et al., 2002). In addition to auxin, second messengers 57 

such as Ca2+, pH oscillations, Reactive Oxygen Species (ROS) and abscisic acid (ABA) were 58 

shown to play an essential role in gravitropism (Young and Evans, 1994; Fasano et al., 2001; Joo 59 

et al., 2001; Ponce et al., 2008). Auxin was shown to induce ROS accumulation during root 60 

gravitropism, where the gravitropic bending is ROS-dependent (Joo et al., 2001; Peer et al., 61 

2013).  62 

ROS such as superoxide and hydrogen peroxide were initially considered toxic 63 

byproducts of aerobic respiration, but currently are known also for their essential role in myriad 64 

cellular and physiological processes in animals and plants (Mittler et al., 2011). ROS and 65 

antioxidants are essential components of plant cell growth (Foreman et al., 2003), cell cycle 66 

control and shoot apical meristem maintenance (Schippers et al., 2016) and play a crucial role in 67 

protein modification and cellular redox homeostasis (Foyer and Noctor, 2005). ROS function as 68 

signal molecules by mediating both biotic- (Sagi and Fluhr, 2006; Miller et al., 2009) and 69 

abiotic- (Kwak et al., 2003; Sharma and Dietz, 2009) stress responses. Joo et al. (2001) reported 70 

a transient increase in intracellular ROS concentrations early in the gravitropic response, at the 71 

concave side of maize roots, where auxin concentrations are higher. Indeed, this asymmetric 72 

ROS distribution is required for gravitropic bending, since maize roots treated with antioxidants, 73 
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which act as ROS scavengers, showed reduced gravitropic root bending (Joo et al., 2001). The 74 

link between auxin and ROS production was later shown to involve the activation of NADPH 75 

oxidase, a major membrane-bound ROS generator, via a phosphatidylinositol 3-kinase-76 

dependent pathway (Brightman et al., 1988; Joo et al., 2005; Peer et al., 2013). Peer et al. (2013) 77 

suggested that in gravitropism, ROS buffer auxin signaling by oxidizing the active auxin, IAA, 78 

to the non-active and non-transported form, oxIAA.  79 

Gravitropic-oriented growth is the default growth program of the plant, with shoots 80 

growing upwards and roots downwards. However, upon exposure to specific external stimuli, the 81 

plant overcomes its gravitropic growth program and bends towards or away from the source of 82 

the stimulus. For example, as roots respond to physical obstacles or water deficiency. The ability 83 

of roots to direct their growth towards environments of higher water potential was described by 84 

Darwin and even earlier, and was later defined as hydrotropism (Von Sachs, 1887; Jaffe et al., 85 

1985; Eapen et al., 2005).  86 

In Arabidopsis, wild-type (WT) seedlings respond to moisture gradients 87 

(hydrostimulation) by bending their primary roots towards higher water potential. Upon 88 

hydrostimulation, amyloplasts, the starch-containing plastids in root-cap columella cells, which 89 

function as part of the gravity sensing system, are degraded within hours and recover upon water 90 

replenishment (Takahashi et al., 2003; Ponce et al., 2008; Nakayama et al., 2012).  Moreover, 91 

mutants with a reduced response to gravity (pgm1) and to auxin (axr1 and axr2) exhibit higher 92 

responsiveness to hydrostimulation, manifested as accelerated bending compared to WT roots 93 

(Takahashi et al., 2002; Takahashi et al., 2003). Recently we have shown that hydrotropic root 94 

bending does not require auxin redistribution and is accelerated in the presence of auxin polar 95 

transport inhibitors and auxin-signaling antagonists (Shkolnik et al., 2016).  These results reflect 96 

the competition, or interference, between root gravitropism and hydrotropism (Takahashi et al., 97 

2009). However, which cellular signals participate in the integration of the different 98 

environmental stimuli that direct root tropic curvature is still poorly understood. Here we sought 99 

to assess the potential role of ROS in regulating hydrotropism and gravitropism in Arabidopsis 100 

roots.  101 
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Results 102 

Different spatial and temporal ROS patterns occur in roots in response to hydrostimulation 103 

and gravistimulation 104 

In order to investigate the role of ROS signals in tropic responses we first assessed the spatial 105 

distribution of ROS in Arabidopsis roots responding to gravitropic stimulation. WT Arabidopsis 106 

seedlings grown vertically on agar-based medium (Materials and Methods) were gravistimulated 107 

by a 90º rotation, and monitored for their ROS distribution by applying Dihydrorhodamine-123 108 

(DHR), a rhodamine-based fluorescent probe mostly sensitive to H2O2 (Gomes et al., 2005) that 109 

is often used in monitoring intracellular, cytosolic ROS (Royall and Ischiropoulos, 1993; Crow, 110 

1997; Douda et al., 2015). DHR staining was detected in the columella, lateral root cap, 111 

epidermal layer of elongation zone (EZ) and the vasculature, and was weaker at the meristematic 112 

zone (Fig.1). This pattern is similar to previously reported staining patterns obtained by H2O2-113 

specific dyes in primary roots of Arabidopsis (Dunand et al., 2007; Tsukagoshi et al., 2010; Chen 114 

and Umeda, 2015) and of other plant species (Ivanchenko et al., 2013; Xu et al., 2015). One to 115 

two hours post gravistimulation, a ROS asymmetric distribution, higher at the concave (bottom 116 

side of the root) was apparent in the epidermal layer of the distal elongation zone (DEZ), where 117 

the bending initiates (Fig.1 A). The asymmetric ROS distribution dissipated after another two 118 

hours (Fig.1 A, D), in accordance with previous reports (Joo et al., 2001; Peer et al., 2013).  119 

To study ROS dynamics during hydrotropic growth, WT seedlings were introduced into a 120 

moisture gradient in a closed CaCl2-containing chamber (herein referred to as the CaCl2 / dry 121 

chamber) as previously described (Takahashi et al., 2002; Kobayashi et al., 2007; Shkolnik et al., 122 

2016). Under this system root bending upon hydrostimulation initiates at a region more distant 123 

from the root tip compared to root bending by gravitropism. The  distances of curvature from the 124 

root tip for hydrotropism and gravitropism were 601.2 ± 18.1 μm and 365.1 ± 13.1 μm, 125 

respectively (mean ± SE), 2 h post stimulation (n=29). We therefore designated the region of 126 

gravitropic bending initiation as the distal elongation zone (DEZ) and the region of hydrotropic 127 

bending initiation as the central elongation zone (CEZ), in accordance with previous definitions 128 

(Fasano et al., 2001; Massa and Gilroy, 2003). Furthermore, during the hydrotropic response, the 129 

root tip keeps facing downwards in response to gravity, where a slight curvature is detected in 130 

the DEZ (Fig.1 B, 1, 2 and 4 hours, concave side is indicated). Interestingly, during hydrotropic 131 

growth, ROS do not form an asymmetric distribution pattern at the DEZ, in contrast to the 132 

gravity-induced ROS asymmetric distribution (Fig.1 B, D). However, asymmetric distribution of 133 
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ROS appears at the CEZ, where the hydrotropic root curvature takes place and detected ROS 134 

levels are lower (Fig.1 B, D). This unequal distribution of ROS appears, however, also in roots 135 

that were subjected to non-hydrostimulating conditions (obtained by adding distilled water to the 136 

bottom the chamber), which do not undergo hydrotropic bending (Fig.1 C). Under these 137 

experimental conditions, a higher ROS level was measured at the side of the root facing the agar 138 

medium (Fig.1 C, arrowhead). The CEZ-located asymmetric distribution is not dynamic, and is 139 

maintained throughout the first four hours of the hydrotropic response without a significant 140 

change in the ratio level between the two sides of the root (Fig.1 B, D). We suspected that this 141 

asymmetric distribution of ROS may be caused by the mechanical tension formed as the root 142 

bends around the agar bed. To further test this, we used the split-agar / sorbitol system (Materials 143 

and Methods) for assessing ROS distribution during hydrotropism. In this experimental system, 144 

no asymmetric ROS distribution could be detected in response to hydrostimulation in the DEZ or 145 

CEZ (Fig.1 E, D). Moreover, we detected no changes in the overall intensity of DHR 146 

fluorescence at the indicated time points in both hydrostimulated and gravistimulated roots 147 

(Supplemental Fig.S1). Collectively, these results depict distinct dynamics and spatial patterns of 148 

ROS distribution during gravitropic and hydrotropic responses, which may imply different roles 149 

of ROS in these tropic responses. We note that strong DHR fluorescence is detected in the root 150 

vasculature above the CEZ at all time points, similar to previous reports (Tsukagoshi et al., 2010; 151 

Chen and Umeda, 2015).  152 

ROS tune root tropic responses  153 

To assess the possible role of ROS in hydrotropism compared to gravitropism, we tested whether 154 

ROS scavenging molecules or ROS-generation inhibitors affect hydrotropic growth. As 155 

described previously, the antioxidant ascorbic acid (ascorbate) has an inhibitory effect on root 156 

gravitropism (Joo et al., 2001; Peer et al., 2013). Indeed, our results show gravitropic bending 157 

inhibition in the presence of 1 mM ascorbate, a concentration that we found to significantly 158 

reduce ROS level at the root tip (Supplemental Fig.S2). Root curvature in control conditions was 159 

64.9 ± 2.6 degrees, whereas in the presence of ascorbate only 49.1 ± 5.2 degrees (mean ± SE) 8 h 160 

post gravistimulation (P=0.011, Student's t test for independent measurements), without 161 

differences in root growth rates (Supplemental Fig.S3). In contrast, application of 1 mM 162 

ascorbate accelerated hydrotropic root bending. Root curvature in the CaCl2 / dry chamber was 163 

27.2 ± 2.6 degrees in control conditions whereas in the presence of ascorbate curvature was 39.3 164 

± 3.5 degrees (mean ± SE) 2 h post hydrostimulation (P=0.01, Student's t test for independent 165 
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measurements), and reduced root growth rate by 29.4% (Fig.2 A, B). The same trend was 166 

apparent when 1 mM of the antioxidant N-Acetyl-Cysteine was applied (not shown).  167 

To further study the effect of ascorbate metabolism on hydrotropism we tested mutants 168 

deficient in the most abundant cytosolic ascorbate peroxidase, Ascorbate Peroxidase 1 (APX1) 169 

(Davletova et al., 2005). apx1-2 seedlings exhibited attenuated hydrotropic bending compared to 170 

WT. Root curvature in the CaCl2 / dry chamber of WT was 72.0 ± 2.8 degrees whereas that of 171 

apx1-2 was 55.8 ± 3.5 degrees (mean ± SE) 5 h post hydrostimulation (P=9.6 ∗ 10ିସ, Student's t 172 

test for independent measurements), with no differences in their growth rates (Fig.2 C, D). These 173 

results were reproduced using the split-agar / sorbitol system in which the ascorbate was 174 

supplemented to the sorbitol agar slice, allowing diffusion of the chemicals towards the root tip 175 

so that the exposure to ascorbate occurs while a water potential gradient is formed (Takahashi et 176 

al., 2002; Antoni et al., 2016) (Supplemental Fig.S4 A, B). These data strongly suggest that the 177 

reduced ability to scavenge cytosolic H2O2 inhibited root hydrotropic bending. Unlike ascorbate-178 

treated seedlings, gravitropic bending was not impaired or promoted in the apx1-2 mutant 179 

(supplemental Fig.S7). 180 

ROS generation by NADPH oxidase has opposite effects on different root tropic responses  181 

To further study the roles of ROS in root tropisms, we tested the effects of diphenylene iodonium 182 

(DPI), an inhibitor of NADPH oxidase and other flavin-containing enzymes (Foreman et al., 183 

2003), on hydrotropic- and gravitropic-bending kinetics and the corresponding ROS distribution 184 

patterns in primary roots. NADPH oxidase is a plasma membrane-bound enzyme that produces 185 

superoxide (O2
•–) to the apoplast (Sagi and Fluhr, 2006). Superoxide is rapidly converted to 186 

H2O2, which may enter the cell passively or through aquaporins (Miller et al., 2010; Mittler et 187 

al., 2011). Application of DPI accelerated hydrotropic root bending but attenuated gravitropic 188 

root bending (Fig.3). In response to hydrostimulation, root bending was accelerated in the 189 

presence of DPI, showing 86.3 ± 2.1 degrees curvature (mean ± SE) in the CaCl2 / dry chamber 190 

after only 4 h, even though root growth rate was inhibited by 65.3% (Fig.3). This result was 191 

reproduced using the split-agar / sorbitol system (Supplemental Fig.S4 A).  192 

Fluorescent ROS staining of DPI-treated roots revealed elimination of ROS from the 193 

epidermal layer of the EZ and further along the root, where ROS at the outer layers (epidermis 194 

and cortex) seemed to drop down and the remaining ROS appeared in the vasculature and its 195 

surrounding layers (Fig.4 A, B). ROS elimination at the outer root cell layers was previously 196 
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described for hydroxyphenyl fluorescein (HPF)-staining upon DPI treatment (Dunand et al., 197 

2007). Along with decreased fluorescence at the EZ, we detected an increase of DHR 198 

fluorescence intensity at the meristematic zone of DPI-treated roots (Fig.4). Dunand et al. (2007) 199 

used nitroblue tetrazolium (NBT) for assessing extracellular O2
•– levels in Arabidopsis root tips, 200 

and detected a decrease in NBT intensity upon DPI treatment. Since the DHR probe is mostly 201 

sensitive to cytosolic H2O2 (Gomes et al., 2005), our results do not contradict previously reported 202 

results. 203 

Gravistimulated seedlings that were pre-treated for 2 h with DPI showed less ROS 204 

accumulation and consequently no ROS asymmetric distribution in the epidermal layer of the 205 

EZ, resulting in a delayed gravitropic response (Fig.4 C). Similarly, seedlings that were 206 

hydrostimulated in the presence of DPI showed elimination of ROS from the epidermal layer at 207 

the bending region, which became more proximal to the root tip (Fig.4 D). Interestingly, the 208 

gravity-directed curvature of the root tip, which occurs during hydrotropic root bending, 209 

appeared to be attenuated in ascorbate- and DPI-treated seedlings (Fig.2 A, Fig.4 D). This 210 

finding demonstrates again the negative effect of ROS elimination on root gravitropism, also in 211 

combination with a hydrotropic response. 212 

Hydrotropism is affected by root NADPH oxidase 213 

To further assess the inhibitory effect of ROS generation by NADPH oxidase on root 214 

hydrotropism we tested transposon-insertion mutants of the plant NADPH oxidase - RBOH 215 

(Respiratory Burst Oxidase Homolog) gene family, which consists of 10 members in 216 

Arabidopsis. These can be divided into three classes based on their tissue-specificity: RBOH D 217 

and F are highly expressed throughout the plant, RBOH A-G and I are expressed mostly in roots, 218 

and RBOH H and J express specifically in pollen (Sagi and Fluhr, 2006). RBOH C has been 219 

intensively studied, and its activity in ROS production in trichoblasts is essential for root hair 220 

elongation and mechanosensing (Foreman et al., 2003; Monshausen et al., 2009). It is expressed 221 

in trichoblasts and in the epidermal layer of the EZ (Foreman et al., 2003), though its role in the 222 

EZ is still unclear (Monshausen et al., 2009). When hydrostimulated in the CaCl2 / dry chamber 223 

or in the split-agar / sorbitol systems, rbohC seedlings exhibited accelerated hydrotropic bending. 224 

Measured in the CaCl2 / dry chamber, root curvature in WT was 46.4 ± 3.1 degrees compared to 225 

64.2 ± 3.5 degrees in rbohC (mean ± SE) 2 h post hydrostimulation (P=5.1 ∗ 10ିସ, student's t 226 

test for independent measurements) with no difference in growth rate compared to WT (Fig.5 A, 227 
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B; Supplemental Fig.S4 C; Supplemental movie 1). We then examined the hydrotropic response 228 

of seedlings deficient in RBOH D, which has the highest expression levels among the RBOHs. 229 

RBOH D is expressed in all plant tissues but mainly in stems and leaves and is known as a key 230 

factor in ROS systemic signaling (Sagi and Fluhr, 2006; Miller et al., 2009; Suzuki et al., 2011). 231 

Interestingly, rbohD seedlings did not exhibit significantly-different hydrotropic bending kinetics 232 

or root growth rates compared to WT (Fig. 5 A, B; Supplemental Fig.S4 C; Supplemental movie 233 

2). DHR staining revealed no significant difference in ROS spatial patterns in gravistimulated 234 

nor hydrostimulated (using the CaCl2 / dry chamber or split-agar / sorbitol system) roots of the 235 

RBOH mutants, compared to WT (Supplemental Fig.S5-S8). Therefore, to better characterize 236 

endogenous ROS levels in root tissues of wt and rbohc and rbohd mutants, we applied Amplex 237 

red for determination of H2O2 content in tissue extracts (Materials and Methods). When 238 

examining extracts from whole seedlings, we observed a 68% and 77% reduction in H2O2 levels 239 

in rbohD and rbohC, respectively, compared to WT (Fig.5 D). We then examined extracts from 240 

excised root apices (1-2 mm from tip) and observed a relatively similar H2O2 content in WT and 241 

rbohD roots, while rbohC mutants showed a 57% reduction in H2O2 content compared to WT 242 

(Fig.5 C). These results are consistent with the tissue-specific expression pattern of the two 243 

RBOHs, as RBOH C is highly expressed in roots, while RBOH D is not (Sagi and Fluhr, 2006) 244 

and with the accelerated  hydrotropic  phenotype of rbohC compared to rbohD and wt. Their 245 

different expression patterns could also be visualized in the high-resolution spatiotemporal map 246 

(Brady et al., 2007) of the eFP browser (Winter et al., 2007).  247 

The acceleration in hydrotropic root bending of rbohC is however weaker compared with 248 

that of DPI-treated WT seedlings (measured in the CaCl2 / dry chamber, root curvature in rbohC 249 

was 75.41±2.19 degrees and root curvature of DPI treated seedlings was 86.31±2.11 degrees 250 

after 4 h of hydrostimulation, while WT and DMSO-treated WT roots exhibited 63.27±2.38 and 251 

62.67±3.17 degrees in that time, respectively). These results may indicate partial functional 252 

redundancy with other root-expressed RBOHs, or involvement of other DPI-sensitive enzymes in 253 

this tropic growth. When treated with DPI, rbohC roots presented the same hydrotropic bending 254 

kinetics as WT roots (not shown). Unlike DPI-treated seedlings, RBOH C- and RBOH D-255 

deficient mutants did not show inhibition or acceleration in their gravitropic growth 256 

(Supplemental Fig.S8) nor weakened gravity-directed curvature of the root tip during 257 

hydrotropic growth (Fig.5) and gravitropic ROS asymmetric distribution as in WT 258 

(Supplemental Fig.S7). These results may be explained by functional redundancy between the 259 
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root-expressed RBOH family members, as well as by compensation of ROS signaling by 260 

mechanisms involved specifically in gravitropism. 261 

 262 

Hydrotrostimulation attenuates the gravitropic ROS and auxin signals  263 

In order to test a possible direct link between hydrotropism and gravitropism through ROS, we 264 

challenged WT seedlings with combined stimuli using the split-agar / sorbitol method (Fig.6 A). 265 

The split-agar system allows slow and controlled exposure of the root tips to increasing osmotic 266 

pressure, and by rotation of the chamber allows changes in the gravity vector (Fig.6 A). After 0-2 267 

h of hydrostimulation, 1 h of gravistimulation induced a clear asymmetric ROS distribution at 268 

the bending EZ. After 3 h of hydrostimulation, 1 h of gravistimulation generated a weak 269 

asymmetric ROS distribution (Fig.6 B, C). Strikingly, following 4 h of hydrostimulation, 1 h of 270 

gravistimulation failed to generate an asymmetric ROS distribution, and gravity-directed root 271 

bending was not observed (Fig.6 B, C). These results indicate that as the osmotic stress stimulus 272 

increases and promotes hydrotropic curvature, gravistimulation is not sufficient to evoke typical 273 

ROS asymmetric distribution, and growth towards higher water potential is favorable. Indeed, 274 

with increasing hydrostimulation time from 0 to 4 hr prior to gravistimulation, gravitropic 275 

curvature decreased (Fig.6 D). Four hrs of hydrostimulation prevented gravitropic curvature as 276 

roots responded only to the hydrotropic stimulus (depicted as a negative curvature angle in Fig.6 277 

D). 278 

Subsequently, in order to assess whether the attenuation of the ROS signal of 279 

gravistimulated roots following hydrostimulation is associated with the attenuation of auxin 280 

distribution, roots of DII-VENUS-expressing transgenic seedlings (Brunoud et al., 2012) were 281 

gravistimulated for 1 h following exposure to an osmotic gradient for 0, 2 or 4 h (Supplemental 282 

Fig.S9). With this auxin reporter, lower levels of DII-VENUS fluorescence indicate higher levels 283 

of auxin. In agreement with the ROS signal dynamics, we observed asymmetric auxin 284 

distribution in the lower part of the root tip (concave) in roots that were gravistimulated with no 285 

prior hydrostimulation, or following 2 h of hydrostimulation (Supplemental Fig.S9), as 286 

previously demonstrated in graviresponding roots (Band et al., 2012). However, 287 

hydrostimulation for 4 h prior to gravistimulation impaired the generation of an auxin gradient 288 

across the root tip (Supplemental Fig.S9).  Based on the known relationship between auxin and 289 

ROS in gravistimulation, these results may suggest that hydrotropic stimulation attenuates the 290 
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gravitropic ROS signal through the interruption of auxin distribution. However, we cannot 291 

exclude the possibility that hydrostimulation attenuates gravistimulated ROS and auxin 292 

distribution through independent signaling pathways that are yet to be elucidated.    293 

Discussion 294 

In order to perform hydrotropic bending, a root must overcome its gravity-directed growth 295 

(Eapen et al., 2005; Takahashi et al., 2009). Our results suggest opposite roles for ROS in 296 

hydrotropic and gravitropic growth behaviors. When treated with ascorbate, an antioxidant, or 297 

DPI, an inhibitor of NADPH oxidase and other flavin-containing enzymes (Foreman et al., 298 

2003), Arabidopsis primary roots exhibit opposite changes in their bending kinetics in response 299 

to the different stimulations, namely, delay in gravitropism and acceleration in hydrotropism 300 

(Fig.2, 3 ,Supplemental Fig. S3 and Supplemental Fig.S4). The antagonism between these two 301 

responses was shown previously for the agravitropic pea mutant (ageotropum), whose lack of 302 

gravity response contributes to its hydrotropic responsiveness (Takahashi and Suge, 1991). 303 

Amyloplast degradation at early stages of a hydrotropic response may also be a mechanism by 304 

which the root eliminates its sense of gravity in order to perform non-gravitropic growth 305 

(Takahashi et al., 2003; Ponce et al., 2008). When examining the ROS and auxin patterns in 306 

response to combined stimuli by first applying hydrostimulation and afterwards applying both 307 

hydro- and gravistimulation, we observed a reduction in gravity-directed ROS-asymmetry and 308 

auxin-gradient when the duration of hydrostimulation is increased (Fig.6, Supplemental Fig.S9). 309 

We therefore conclude that during hydrotropic growth, the root actively attenuates gravitropic 310 

auxin and ROS signaling to overcome gravitropic growth. 311 

 In gravitropism, auxin is required for ROS production (Joo et al., 2005; Peer et al., 2013). 312 

In contrast, neither auxin redistribution nor auxin signaling are required for hydrotropic bending 313 

(Shkolnik et al., 2016). Moreover, inhibition of polar auxin transport or Transport Inhibitor 314 

Response (TIR)-dependent signaling accelerate hydrotropism (Shkolnik et al., 2016). Consistent 315 

with these observations, asymmetric distribution of ROS was not detected in the DEZ during 316 

hydrotropism. In gravitropism, however, both an auxin gradient at the lateral root cap, and ROS 317 

asymmetric distribution at the DEZ are formed transiently. Collectively, these results 318 

demonstrate the antagonism between hydro- and gravitropism with respect to auxin- and ROS-319 

signaling. 320 
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 Asymmetric ROS distribution was however observed in the CEZ of hydrostimulated 321 

roots in the CaCl2 / dry chamber system, and its asymmetry ratio level has not changed during 322 

the measured time points (Fig.1 B, D). This asymmetric pattern, i.e., higher ROS levels at the 323 

side of the root that is in contact with the agar medium, was also present in roots that were 324 

exposed to non-hydrostimulating conditions and do not perform hydrotropic bending (Fig.1 C, 325 

D). Therefore, this non-transient unequal distribution of ROS in the CEZ may be a result of 326 

mechanosensing-induced ROS (Monshausen et al., 2009) at the region where the root detaches 327 

from the agar medium. Indeed, no ROS asymmetry was observed in roots exposed to a water-328 

potential gradient in the split-agar / sorbitol system (Fig.1 E,D), where the root does not 329 

encounter mechanical tension by the agar due to bending. Therefore it is clear that hydrotropism 330 

does not involve asymmetric distribution of ROS. Yet, it attenuates gravity-directed asymmetric 331 

ROS distribution. 332 

 In addition to their roles as intracellular signaling molecules, ROS function in several 333 

apoplastic processes, including cell wall rigidification that is thought to restrict cell elongation 334 

(Hohl et al., 1995; Monshausen et al., 2007). It is tempting to hypothesize that in gravitropism, 335 

the higher levels of ROS in the concave side of the root promote root bending by inhibition of 336 

cell elongation at this side. However, this hypothesis fails to explain the opposite effects of 337 

antioxidants and ROS-generator inhibitors on gravi- and hydrotropism, as differential cell 338 

elongation is needed in both cases.  339 

In this study, we show that ROS, presumably cytosolic H2O2 in the epidermal layer of the 340 

root EZ, negatively regulate hydrotropic bending. The activity of RBOH C was characterized as 341 

essential for this process, since rbohC mutants showed accelerated hydrotropic root bending and 342 

lower levels of H2O2 in the root apex (Fig.5). This, however, does not exclude the possible 343 

contribution of other root-expressed RBOHs or other flavin-containing enzymes to the process. 344 

The localization of ROS-generating enzymes of the RBOH family has substantial effects on the 345 

tissue-specific ROS levels and the consequent hydrotropic root curvature, as it appears that in 346 

mutants deficient in RBOH D, which is expressed throughout the plant but mostly in leaves and 347 

stems (Suzuki et al., 2011) ROS levels in the root apex and hydrotropic curvature were similar to 348 

those of WT (Fig.5, Supplemental Fig.S3). As for ROS scavenging enzymes, we detected a weak 349 

hydrotropic root bending in apx1-2 mutants (Fig.2, Supplemental Fig.S3), which lack the 350 

function of the abundant cytosolic H2O2-scavenging enzyme APX1 and are thus expected to 351 

accumulate higher H2O2 levels in all plant tissues. Peroxidases were shown to play an important 352 
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role in root development and growth control (Dunand et al., 2007) by modifying O2
•– to H2O2 at 353 

the transition-to-elongation zone (Tsukagoshi et al., 2010). Our observations are consistent with 354 

this ROS type-specific accumulation pattern, and add a new aspect to the role of H2O2 at the root 355 

EZ.  356 

The phytohormone abscisic acid (ABA) was previously reported as a positive regulator of 357 

root hydrotropism. Arabidopsis mutants deficient in ABA-sensitivity (abi2-1) and ABA-358 

biosynthesis (aba1-1) were reported as less responsive to hydrostimulation, whereas ABA 359 

treatment rescued the delayed hydrotropic phenotype of aba1-1 (Takahashi et al., 2002). ABA-360 

signaling involves the activation of Pyrabactin Resistance/PYR1-like (PYR/PYL) receptors that 361 

mediate the inhibition of clade A phosphatases type 2C (PP2C), which are negative regulators of 362 

the pathway (Antoni et al., 2013). The involvement of this pathway in root hydrotropism was 363 

demonstrated recently, as a pp2c-quadruple mutant exhibited an ABA-hypersensitive phenotype 364 

and consequently enhanced hydrotropic response, while a mutant deficient in six PYR/PYL 365 

receptors exhibited insensitivity to ABA treatment and to hydrotropic stimulation (Antoni et al., 366 

2013). Since ABA was shown to induce stomata closure through the activation of the NADPH 367 

oxidases RBOH D and RBOH F (Kwak et al., 2003), it is tempting to hypothesize that ABA 368 

activates ROS production in root-expressed NADPH oxidases during hydrotropic growth. A 369 

candidate mediator for this process may be PYL8, since PYL8-deficient mutants (pyl8-1 and 370 

pyl8-2) exhibited a non-redundant ABA-insensitive root growth when treated with ABA, and 371 

transcriptional fusion of PYL8 (ProPYL8:GUS) revealed its expression in the stele, columella, 372 

lateral root cap and root epidermis cells (Antoni et al., 2013). The latter expression region 373 

overlaps with that of RBOH C (Foreman et al., 2003). However, distinguished from their role in 374 

stomata closure, ROS negatively regulate hydrotropism and thus may function in a negative 375 

feedback to ABA signaling. Antagonism between ROS and ABA also appears in seed 376 

germination, as H2O2 breaks ABA-induced seed dormancy in several plant species (Sarath et al., 377 

2007). 378 

In the context of integration of environmental stimuli by the root tip (Darwin and Darwin, 379 

1880), we suggest that ROS, presumably cytosolic hydrogen peroxide, fine tune root tropic 380 

responses by acting as positive regulators of gravitropism and as negative regulators of 381 

hydrotropism. Root hydrotropism and gravitropism differ in several aspects, such as the time of 382 

response (Eapen et al., 2005), the region of bending initiation (reported in this study), the 383 

involvement of auxin (Kaneyasu et al., 2007; Shkolnik et al., 2016) and the effect of ROS on the 384 
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response kinetics. In order to elucidate the effects of ROS on tropic responses, their downstream 385 

effectors in gravitropism and hydrotropism need to be characterized.  386 

Materials and Methods 387 

Plant material and growth conditions 388 

Wild type Arabidopsis thaliana (Col-0) and T-DNA/Transposon insertion mutants: rbohC (rhd2), 389 

rbohD (Miller et al., 2009) and apx1-2 (SALK_000249) (Suzuki et al., 2013) were used in this 390 

research. For vapor sterilization, seeds were put inside a desiccator next to a glass beaker 391 

containing 25 ml water, 75 ml bleach and 5 ml HCl for 2 h. Sterilized seeds were sown on 12 x 392 

12 cm squared Petri dishes, containing 2.2 gr/L Nitsch & Nitsch medium (Duchefa Biochemie 393 

B.V., Haarlem, the Netherlands) titrated to pH 5.8, 0.5 % (w/v) sucrose supplemented with 1 % 394 

(w/v) plant agar (Duchefa) and vernalized for one day in 4º C in dark. Plates were put vertically 395 

in a growth chamber at 22º C and day light (100 µE m-2 sec-1) under 16/8 light/dark photoperiod. 396 

The root hair-deficient phenotype of rbohC was observed when grown on pH 5-titrated growth 397 

medium. Treatments with 10 µM DPI (Diphenyleneiodonium chloride, Sigma) dissolved in 398 

Dimethyl Sulfoxide (DMSO), 1 mM Sodium Ascorbate (Sigma) dissolved in distilled water and 399 

1 mM N-acetyl-cysteine (Acros organics) dissolved in distilled water were performed by 400 

applying these chemicals in the agar medium. Ascorbate treatment for DHR staining was 401 

performed by transferring seedlings onto 1 mm Whatman filter paper 0.25 X Murashige and 402 

Skoog medium (MS) (Murashige and Skoog, 1962) and the indicated ascorbate concentrations. 403 

Hydrotropic stimulation assays 404 

A CaCl2 dry chamber was designed based on a previously described system (Takahashi et al., 405 

2002; Kobayashi et al., 2007; Shkolnik et al., 2016) with the following modifications: Plates 406 

were prepared as described in ‘Plant material and growth conditions’ with or without 407 

supplemented chemicals, as indicated. The medium was cut 6 cm from the bottom and 5-7 day-408 

old seedlings were transferred to the cut medium, such that approximately 0.2 mm of the primary 409 

root tip was bolting from the agar into air. Twelve ml of 40 % CaCl2 (w/v) (Duchefa) were put at 410 

the bottom of the plate, which was then closed, sealed with Parafilm and placed vertically under 411 

30 µE m-2 sec-1 white light. As control, non-hydrostimulating conditions were achieved by 412 

adding 20 ml of distilled water to the bottom of the plate. In this system, the roots were exposed 413 

to the supplemented chemical at the beginning of the experiment. Hydrostimulation was 414 

performed also using the previously described split-agar method (Takahashi et al., 2002; Antoni 415 
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et al., 2016). Ascorbate, DPI or DMSO (control) were added directly to the sorbitol containing 416 

gel slice.  Root tips were imaged at indicated time points using Nikon D7100 camera equipped 417 

with AF-S DX Micro NIKKOR 85 mm f/3.5G ED VR lens (Nikon, Tokyo, Japan). For root 418 

curvature measurements and supplemental movies of the humidity-gradient system, plates were 419 

faced ~45 º to the lens, and multiple photos with changing focus were obtained using Helicon 420 

remote software, and stacked using Helicon focus software (www.heliconsoft.com). Root 421 

curvature and growth were analyzed using ImageJ software 1.48V (Wayne Rasband, NIH, USA).  422 

Gravitropic stimulation assay 423 

Five to seven-day-old seedlings were transferred to a standard medium, or ascorbate containing 424 

medium, following one hour of acclimation at original growth orientation before the plates were 425 

90º rotated. For DPI treatment, seedlings were pre-treated in DMSO or 10 µM DPI-containing 426 

media for 2 h, then transferred to another plate containing standard medium, followed by 30 min 427 

acclimation at the original growth orientation before the plates were rotated by 90º. 428 

Confocal microscopy 429 

For ROS detection, seedlings were immersed in 86.5 µM [0.003% (w/v)] Dihydrorhodamine-123 430 

(Sigma) dissolved in Phosphate Buffer Saline (PBS x 1, pH 7.4) for 2 or 5 min, after hydrotropic 431 

or gravitropic stimulation assays. Fluorescent signals in roots were imaged with a Zeiss LSM 432 

780 laser spectral scanning confocal microscope (Zeiss, http://corporate.zeiss.com), with a 10X 433 

air (EC Plan-Neofluar 10x/0.30 M27) objective. Acquisition parameters were as follows: master 434 

gain was always set between 670 and 720, with a digital gain of 1, excitation at 488 nm (2%) and 435 

emission at 519-560 nm. Signal intensity was quantified as mean grey value using ImageJ 436 

software. Confocal images were pseudo-colored using the RGB look-up table of the ZEN 437 

software, for easier detection of the fluorescent signal distribution in the root. Imaging of DII-438 

VENUS expressing roots was performed as previously described (Shkolnik et al., 2016). 439 

Determination of H2O2 in tissue extracts 440 

Whole seedlings (n = 20 seedlings) and root apices (1-2 mm from root tip, n = 60 seedlings) 441 

were frozen in liquid nitrogen and homogenized in Phosphate Buffer Saline (PBS x 1, pH 7.4) 442 

(600 µl for whole seedlings and 150 µl for root apices), centrifuged in 10,000 g for 5 min in 4° C 443 

and the supernatant was used as the tissue extract. H2O2 levels in the extracts were measured 444 

using the Amplex red assay kit (Molecular Probes, Invitrogen) according to the manufacturer’s 445 

protocol, with 3 biological repeats and two technical replicates. Samples were measured with a 446 
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Synergy HT fluorescence plate reader (BioTek) using 530/590 nm excitation/emission filters. 447 

Protein levels in the extracts were determined using the Bradford reagent (Bio-Rad). The 448 

absorbance was read in the same plate reader using a 595 nm filter. Fluorescence reads were then 449 

normalized to the protein amount. 450 

Statistical analysis 451 

Results were analyzed using MS Excel ToolPak and R version 3.1.1.  452 

 453 

Supplemental materials 454 

Figure S1: Relative DHR fluorescence intensity in gravistimulated and hydrostimulated roots. 455 

Figure S2: ROS level is reduced by ascorbate. 456 

Figure S3: The antioxidant ascorbate impedes root gravitropic response. 457 

Figure S4: Hydrostimulation using the split-agar / sorbitol method. 458 

Figure S5: ROS distribution during hydrotropic growth in WT, rbohC and rbohD mutants. 459 

Figure S6: ROS distribution in hydrostimulated WT, rbohC and rbohD mutants using the split-460 

agar / sorbitol system. 461 

Figure S7: ROS distribution in gravistimulated WT, apx1-2, rbhoC and rbhoD mutants. 462 

Figure S8: rbohC and rbohD exhibit normal gravitropic growth compared to WT. 463 

Figure S9: Auxin distribution in gravistimulated root tips with or without prior 464 

hydrostimulation. 465 

Video movie-1: Hydrotropism of rbohC mutant compared to wt. 466 

Video Movie-2: Hydrotropism of rbohD mutant compared to wt. 467 
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Figure Legends 474 

 475 

Figure 1: ROS spatial and temporal distribution patterns during root gravitropism and 476 

hydrotropism. A, B, C and E) Confocal microscopy of 5-day old seedlings stained with 477 

Dihydrorhodamin-123 (DHR), a ROS-sensitive fluorescent dye. Images were pseudo-colored, 478 

red indicates higher ROS-dependent fluorescence intensity. Scale bars, 100 µm. DEZ, Distal 479 

Elongation Zone, CEZ, Central Elongation Zone (designated according to Fasano et al., 2001). 480 

White lines next to the root mark defined root zones. g represents gravity vector, Ψ represents 481 

water potential gradient. Concave and convex sides of the root are indicated. Arrowheads point 482 

to regions where the fluorescence signal distributes unevenly between the two sides of the root. 483 

A) Under gravistimulation, an asymmetric distribution of ROS was apparent 2 h post stimulation 484 

and dissipated after another 2 h. This asymmetry was detected at the DEZ where higher ROS 485 

levels were observed at the concave side of the root. B) Under hydrostimulation, ROS distribute 486 

asymmetrically at the CEZ however maintain symmetric distribution at the DEZ. C) The 487 

asymmetric ROS pattern at the CEZ was also observed in roots that were exposed to non-488 

hydrostimulating conditions and do not bend hydrotropically. The higher ROS level was 489 

observed at the side that is in contact with the agar medium. D) Quantification of DHR 490 

fluorescence, measured at the epidermal layer in two regions of the root EZ (in the DEZ of 491 

gravistimulated roots and in the DEZ and CEZ of hydrostimulated roots). The data is presented 492 

as the ratio between the signal at the concave and the convex sides of the root. Error bars 493 

represent mean ± SE (3 biological independent experiments, 14<n<23). **p < 0.01, Student's t-494 

test versus start time. E) Roots were hydrostimulated for the indicated times using the split-agar / 495 

sorbitol system. F) Quantification of DHR fluorescence, measured at the DEZ epidermal layer 496 

(200 µm above apex) and CEZ (600 µm above apex). The data is presented as the ratio between 497 

the signal at the concave and the convex sides of the root. Error bars represent mean ± SE (3 498 

biological independent experiments, n=20). No significant difference was found among different 499 

hydrostimulation times (Tukey-HSD post hoc-test (P < 0.05)).  500 

 501 
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Figure 2: Ascorbate accelerates root hydrotropic growth, and a mutant deficient in APX1 shows 502 

attenuated hydrotropic bending. A) Seedlings performing hydrotropic bending 2.5 h post 503 

hydrostimulation in the presence or absence of 1 mM sodium ascorbate. In both A and C) g 504 

represents gravity vector, Ψ represents water potential gradient, Scale bar, 1 mm. B) Root 505 

curvature kinetics and growth rate of ascorbate-treated hydrostimulated seedlings. Root 506 

curvature was measured at 1 h interval for 7 h following hydrostimulation. Root growth rate was 507 

determined by measuring the length at the beginning and at the end of the experiment. Error bars 508 

represent mean ± SE (3 biological independent experiments, 10 seedlings each). *p <0.05, 509 

Student’s t-test for independent measurements. C) Root hydrotropic bending of WT and apx1-2, 510 

5 h post hydrostimulation. D) Root curvature kinetics and growth rate of apx1-2 and WT 511 

hydrostimulated seedlings. Root curvature and root growth rate were measured as described in 512 

B). 513 

 514 

Figure 3: Application of DPI, an NADPH oxidase inhibitor, accelerates hydrotropism while 515 

delaying gravitropism. A) Application of 10 µM Diphenyleneiodonium (DPI) to the growing 516 

medium promotes hydrotropic curvature (first two left panels), and impedes gravitropic 517 

curvature (two right panels). Images were taken 2 h post hydrostimulation (scale bar, 1 mm) and 518 

12 h post gravistimulation (scale bar, 5 mm). g represents gravity vector, Ψ represents water 519 

potential gradient. B) Root curvature was measured at 1 h interval for 6 h following 520 

hydrostimulation and at 2 h interval for 12 h following gravistimulation. Error bars represent 521 

mean ± SE (3 biological independent experiments, 10 seedlings each). C) DPI inhibits root 522 

growth in both physiological assays. Root growth rate was determined by measuring length at 523 

the beginning and at the end of the experiment. Error bars represent mean ± SE (3 biological 524 

independent experiments, 10 seedlings each). **p<0.01, t-test for independent measurements. 525 

Figure 4: DPI eliminates ROS levels at the epidermal layer of the root elongation zone and 526 

elevates ROS levels at the meristematic zone. A, C and D) DHR fluorescence (in A, over bright 527 

field, in C and D, fluorescent channel only) of seedlings treated for 2 h with 10 µM DPI or 528 

DMSO for control. Scale bars, 100 µm in all confocal images. g represents gravity vector, Ψ 529 

represents water potential gradient. A) Images of unstimulated roots, pre-treated for 2 h with 10 530 

µM DPI or DMSO. DHR signal is more intense and penetrates to the deeper root layers due to 531 

longer incubation in the dye (5 minutes). Images are representatives of n=23 seedlings. B) DHR 532 
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fluorescence intensity of seedlings treated with DPI or DMSO for 2 h, measured at the epidermal 533 

layer of the EZ and at the meristematic zone. Error bars represent mean ± SE (3 biological 534 

independent experiments, n=23 seedlings in total). *p<0.05, **p<0.01, t-test for independent 535 

measurements. C) Seedlings pre-treated with DPI for 2 h were gravistimulated, and show less 536 

ROS accumulation and asymmetrical distribution at the EZ. Images shown here are of a more 537 

extraneous section of the root, where the differences between DPI-treatment and control are 538 

highly detectable. Images are representatives of n = 11 seedlings.  D) Seedlings that were 539 

hydrostimulated for 2 h on a DPI containing medium showing elimination of the signal from the 540 

epidermal layer at the bending region, which became more proximal to the root tip. Images are 541 

representatives of n = 20 seedlings. 542 

Figure 5: rbohC, but not rbohD, show accelerated hydrotropic bending and lower ROS levels in 543 

the root apex. A) Root hydrotropic growth of WT, rbohC and rbohD, 2 h post hydrostimulation. 544 

Scale bar, 1 mm. g represents gravity vector, Ψ represents water potential gradient. B) Root 545 

curvature kinetics and growth rates. Root curvature was measured at 1 h interval for 7 hours 546 

following hydrostimulation. Root growth rate was determined by measuring length at the 547 

beginning and at the end of the experiment. Error bars represent mean ± SE (3 biological 548 

independent experiments, 10 seedlings each). Statistical difference in root curvature was tested 549 

for 2 and 5 h post hydrostimulation. C) Determination of H2O2 content in root apices (1-2 mm 550 

from tip) and whole seedlings (D) of WT, rbohD and rbohC, measured by the Amplex red assay 551 

(Materials and Methods). The fluorescent reads were normalized to the amount of extracted 552 

protein, measured by the Bradford assay. Error bars represent mean ± SD (3 biological repeats 553 

with two technical replicates. for root apices, n = 60, for whole seedlings, n = 20). The higher y-554 

scale in C is a result of normalization to ten-fold lower protein level extracted from root apices. 555 

In B, C and D) Means with different letters are significantly different (p < 0.05, Tukey HSD 556 

adjusted comparisons).  557 

Figure 6: Hydrotropism abrogates the gravitropic ROS signal. A) Schematic presentation of the 558 

assay applied to test ROS distribution at root tips of hydrostimulated seedlings and a combined 559 

gravistimulation with hydrostimulation. B) Roots were hydrostimulated for the indicated times 560 

and then gravistimulation for 1 h, stained with Dihydrorhodamin-123 (DHR) and imaged using a 561 

confocal microscope (Materials & Methods). Images are presented as pseudo color. Scale bar, 562 

100 µm. C) Quantification of DHR fluorescence, measured at the DEZ epidermal layer (200 µm 563 

above apex). The data is presented as the ratio between the signal at the concave and the convex 564 
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sides of the root. Error bars represent mean ± SE (3 biological independent experiments, n=20). 565 

D) Root curvature of 1 h gravistimulated seedlings following hydrostimulation for the indicated 566 

times. The 1 h gravitropic curvature following 0, 2, 3 and 4 h hydrosimulation was  14.42o ± 567 

1.27,   9.16o ± 0.76, 6.33o ± 0.78 and -3.14o ± 2.03, respectively. Error bars represent mean ± SE 568 

(3 biological independent experiments, n=15). Negative value means curvature against the 569 

gravity vector direction.   In A and B, Ψ and g represent the water potential gradient and gravity 570 

vector, respectively. ROS images of hydrostimulated roots for the same indicated times, without 571 

gravistimulation are shown in Fig. 1 E. In C and D, letters above bars represent statistically 572 

significant differences by Tukey-HSD post hoc-test (P < 0.05).  573 
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