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Effects of jasmonic acid signalling 
on the wheat microbiome differ 
between body sites
Hongwei Liu, Lilia C. Carvalhais, Peer M. Schenk & Paul G. Dennis

Jasmonic acid (JA) signalling helps plants to defend themselves against necrotrophic pathogens and 
herbivorous insects and has been shown to influence the root microbiome of Arabidopsis thaliana. 
In this study, we determined whether JA signalling influences the diversity and functioning of the 
wheat (Triticum aestivum) microbiome and whether these effects are specific to particular parts of the 
plant. Activation of the JA pathway was achieved via exogenous application of methyl jasmonate and 
was confirmed by significant increases in the abundance of 10 JA-signalling-related gene transcripts. 
Phylogenetic marker gene sequencing revealed that JA signalling reduced the diversity and changed the 
composition of root endophytic but not shoot endophytic or rhizosphere bacterial communities. The 
total enzymatic activity and substrate utilisation profiles of rhizosphere bacterial communities were not 
affected by JA signalling. Our findings indicate that the effects of JA signalling on the wheat microbiome 
are specific to individual plant compartments.

Plants are associated with diverse microbial communities that influence their health and nutrition1. These organ-
isms are known collectively as the plant microbiome and could be used to more sustainably maintain or enhance 
global food security. To achieve this, ways to manipulate the structure of plant-associated microbial communities 
need to be identified. Recently, activation of the jasmonic acid (JA) plant defence pathway, which is involved 
in suppression of necrotrophic pathogens and herbivorous insects2, was shown to alter the composition of the 
Arabidopsis thaliana root microbiome3. Activation of the JA signalling pathway increased the relative abundances 
of bacterial populations closely related to taxa that are reported to suppress phytopathogens and insects3. This 
suggests that when under attack plants may have evolved mechanisms to recruit symbionts that enhance their 
tolerance to biotic stress. Currently, however, it is not known whether the microbiomes of other plant species 
are influenced by activation of the JA pathway, and whether these effects, if any, are also apparent in endophytic 
compartments of the host.

Given the intimate physical association between plants and endophytic symbionts, changes to the structure of 
endophytic communities may disproportionately influence host fitness. While JA signalling has been shown to 
restrict endophytic colonisation of rice (Oryza sativa) by incompatible strains of nitrogen-fixing Azoarcus bacteria4  
and suppress nodulation in Lotus japonicas5, it remains unknown whether JA signalling influences the overall 
structure of endophytic microbiomes.

Wheat is one of the most important and widely grown crops worldwide. Despite this, the effects of JA signal-
ling on wheat microbial communities have not been characterised. In this study, we used phylogenetic marker 
gene sequencing to determine whether activation of the JA pathway altered the diversity of bacterial and archaeal 
communities associated with the wheat rhizosphere and root and shoot endophytic environments. Increased JA 
signalling was achieved via exogenous application of methyl jasmonate (MeJA) and confirmed by quantification 
of JA-associated gene transcripts6. Lastly, we measured the total enzymatic activity and substrate utilisation pro-
files of microbial communities associated with the rhizosphere.

Results and Discussion
Activation of the JA signalling pathway.  The transcriptional level of ten genes associated with activation 
of the wheat JA signalling pathway was quantified in shoot tissues 72 hours after MeJA application using real-time 
PCR (Fig. 1). Previously, we have demonstrated that these genes are strongly associated with the intensity of JA 
signalling6. Relative to the control, MeJA application led to significant increases in the abundance of all gene tran-
scripts as follows: PR1.1 (+​2.4 fold), PR2 (+​3.3 fold), PR4a (+​2.3 fold), PR5 (+​3.0 fold), PR9 (+​8.0 fold), WCI2 
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(+​29.4 fold), WCI3 (+​25.4 fold), CHI3 (+​1.9 fold), TaAOS (+​7.0 fold) and LIPASE (+​14.3 fold) (Fig. 1). These 
results indicate that the MeJA treatment was successful in activating the JA signalling pathway.

Root and shoot endophytes.  Relative to shoots, the diversity of root endophytic communities was richer 
(Sobs and Chao1) and more even (Simpson’s Diversity Index) (R2 >​ 83%, P <​ 0.001) (Figs 2 and S1). This is con-
sistent with the fact that root endophytes typically derive from soil7 and that shoot endophytes colonise either 
from root endophytic environments via the vascular tissue or enter via openings on stems and leaves8,9. The com-
position of endophytic communities also differed significantly between roots and shoots (R2 =​ 88.9%, P =​ 0.002; 
Figs 3 and S2). Shoot endophytes were positively associated with members of the Shewanella (OTU 21–22) and a 
representative of the Halomonas (OTU 27) (Figs 3 and S2). Root endophytes were positively associated with rep-
resentatives of the Streptomyces (OTUs 11–14) and members of the Actinosynnemataeae (OTU 1) and Glycomyces 
(OTU 4) (Figs 3 and S2). All of these taxa have previously been detected as endophytes in a wide-range of plant 
species. For example, representatives of the Halomonas have been observed in endophytic root and shoot envi-
ronments of: Alopecurus aequalis10, Typha domingensis11 and Arthrocnemum macrostachyum12. Shewanella spp. 
have been detected inside potato tubers13, rice roots14 and baby spinach leaves15. Actinobacteria, particularly 
Streptomyces spp., are frequently isolated from endophytic root and shoot environments of maize (Zea mays L.)16, 
rice17, tomato18 and wheat19–22 and members of the Streptomycetaceae are key components of endophytic commu-
nities in Arabidopsis thaliana roots23,24.

The influence of JA signalling on the diversity of root and shoot endophytes.  Activation of JA 
signalling led to a significant reduction in the richness (P <​ 0.001) and evenness (P <​ 0.001) of root, but not 
shoot, endophytic communities (Figs 2 and S1). This novel finding may indicate that when under attack plants 
have evolved a mechanism to generally suppress microbial colonisation. However, absolute rather than relative 
abundances are needed to test this hypothesis. Previous studies have also reported no effects of JA signalling on 
the diversity of endophytes associated with aerial parts of plants25. Root endophytic communities may be more 
responsive to JA signalling because, relative to aboveground environments, soils harbour more organisms and, 
therefore, more potential attackers. Activation of JA signalling also led to a significant change in the composition 
of root, but not shoot, endophytic communities (P =​ 0.011; Figs 3 and 4 and S2). Relative to the control, MeJA 
treatment significantly increased the relative abundances of a Actinosynnemataeae (OTU 1) and a Streptomyces 

Figure 1.  The effect of MeJA application on the transcription of genes associated with the jasmonic acid 
(JA) signalling pathway in 10-day-old wheat seedlings. Asterisks indicate significant differences between 
control and MeJA treated plants (*P <​ 0.05, **P <​ 0.01, ***P <​ 0.001, two-tailed student’s t test). Error bars 
represent standard errors of the means (n =​ 3).

Figure 2.  The effect of MeJA treatment on the observed numbers of bacterial taxa (OTUs) associated with (a) 
wheat shoot and root endophytic environments, (b) bulk soil and the wheat rhizosphere. The asterisks indicate 
significant difference (P <​ 0.001) between treatments. All values were based on 1,250 rarefied sequences per 
sample. Error bars denote standard errors (n =​ 3).
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(OTU 11) population, and decreased the relative abundances of a Glycomyces (OTU 4) population and several 
members of the Streptomyces (OTUs 12–14) (Fig. 4). All of these taxa are members of the Actinobacteria, which 
include many populations that have been shown to promote plant growth, mobilise nutrients and suppress bac-
terial, fungal or viral phytopathogens26–30. For this reason, the observed changes in the relative abundances of 
actinobacterial populations in our study, may have had functional consequences for the host, which deserve 
further investigation in future studies.

Rhizosphere and bulk soil microbial communities.  Activation of the JA pathway did not significantly 
influence the richness, evenness or composition of bacterial communities associated with the rhizosphere or bulk 
soil (P >​ 0.05) (Figs 2 and 5 and S1). Likewise, activation of the JA pathway did not influence the total enzymatic 
activity or substrate utilisation profiles of microbial communities associated with rhizosphere or bulk soil (Fig. S3).  
While all previous studies indicate that JA signalling has no effect on the richness or evenness of rhizosphere 
bacterial communities3,31, the effects on bacterial community composition are inconsistent. When grown in soil 
collected from areas where A. thaliana grows naturally, stimulation of the A. thaliana JA pathway led to a signif-
icant alteration in rhizosphere bacterial community composition3. However, when grown in ‘non-native’ soils, 
induction of the A. thaliana JA pathway had no effect on the composition of rhizosphere bacterial communities31. 
This suggests that JA pathway-mediated effects on rhizosphere bacterial communities may be influenced by soil 
type and the length of association between a particular plant genotype and soil. The soil selected in our study had 
a long cropping history of wheat but we did not detect any effects on rhizosphere bacterial communities within 
three days of JA signalling. This does not rule out the possibility that effects may become apparent over longer 
time periods or for plants grown in other soils.

As observed in many studies32,33, the composition of bacterial communities in the rhizosphere differed from 
those of those associated with bulk soil (R2 =​ 13.3%, P =​ 0.048; Figs 5 and S4). The rhizosphere was associated 
with larger relative abundances Actinomycetales (OTU 36, 38), Chloroflexi (OTU 51) and Caulobacteraceae 
populations (OTU 60), while bulk soil was positively associated with members of Arthrobacter (OTU 40), 
Azohydromonas (OTU 75), Acinebacter (OTU 83) and Ramlibacter (OTU 77) (Figs 5 and S4). Relative to bulk 
soil, the rhizosphere was also associated with more microbial enzyme activity (P <​ 0.001; Fig. S3). Bacterial com-
munity richness and evenness (Figs 1 and S1) and microbial substrate utilisation profiles (Fig. S3), however, were 
similar between rhizosphere and bulk soil samples.

Effects of JA signalling on root and shoot biomass.  Relative to the controls, MeJA treatment led to a 
14% reduction in root dry weight (P =​ 0.015) but shoot biomass was not affected (Fig. S7). This is consistent with 

Figure 3.  Heatmap summarising variation in the composition of bacterial communities associated 
with wheat shoot and root endophytic environments with or without MeJA treatment. Each Operational 
Taxonomic Unit (OTU) has a unique numeric identifier shown in square brackets that is consistent with those 
shown in other figures.
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previous studies in Arabidopsis thaliana34,35 and sunflower (Helianthus annuus L.)36, which reported root inhibi-
tion upon activation of JA signalling.

Conclusion
Our study demonstrates that activation of JA signalling in wheat reduces the diversity and changes the composi-
tion of bacterial communities in endophytic roots but not in shoots or in the rhizosphere. Most of the root endo-
phytic populations that became more abundant in response to JA signalling were closely related to taxa previously 
reported to suppress bacterial, fungal or viral phytopathogens, promote plant growth or mobilise nutrients26–30. 
JA signalling also led to a decrease in root biomass, which suggests that plants prioritise defence over growth 
when under attack. We hypothesis that the change in root endophyte communities in response to JA signalling 
may reflect a coevolved mechanism by which plants recruit microbial symbionts that enhance host biotic stress 
tolerance when under attack.

Materials and Methods
Plant growth conditions and experimental design.  Wheat (Triticum aestivum) seeds (Crusader vari-
ety) were pre-germinated on a moist filter paper in a petri-dish for 36 h and then planted in 30-well punnet trays 
with three seeds per well (Fig. S5). Plants were grown in soil collected from 0–10 cm depth in a long-term wheat 
paddock in Condamine, Queensland, Australia (26.90°S, 149.64°E). Key physicochemical characteristics of this 
soil are summarised in Table S1. The soil was a mesotrophic effervescent Brown Sodosol developed on Cainozoic 
sand plains and had been under no-till management for 19 years. This paddock has a long cropping history of 
wheat and the previous crop on this soil was also wheat. The soil contained 25% clay, 14% silt and 61% sand and 
was homogenised prior to planting using a 2.4 mm sieve. Two additional trays were filled with soil but were not 
planted (Fig. S5). All trays were transferred to a controlled environment chamber (Percival Scientific, Boone, IA, 
USA) at 20 °C with a photoperiod of 12 h and light intensity of 150 mmol m−2 s−1. Throughout the experiment, the 
plants were watered once per two days with an amount ~10 mL per well, and the positions of the trays within the 
growth chamber were changed on a daily basis.

After 10 days (two-leaf stage), the JA signalling pathway was activated by exogenously applying methyl jas-
monate (MeJA) as previously described3. Briefly, 300 μ​L, 0.5% (v/v ethanol) of MeJA was applied on a cotton ball 
attached to the lid of the tray to create an atmosphere containing 0.025 μ​L MeJA L−1. The tray was then immedi-
ately sealed with tape and enclosed in two sealed transparent plastic bags. The same procedure was repeated for 
the control plants but MeJA was omitted and 300 μ​L of ethanol which was the solvent used to prepare MeJA solu-
tion was applied to the cotton ball. To determine whether MeJA led to any direct effects on soil microorganisms 

Figure 4.  Bacterial Operational Taxonomic Units (OTUs) associated with wheat root endophytic 
environments that were most strongly affected by MeJA treatment. The asterisks indicate significant 
differences between treatments (*P <​ 0.05, **P <​ 0.01, ***P <​ 0.001, two-tailed student’s t test). Each OTU has a 
unique numeric identifier shown in square brackets that is consistent with those shown in other figures.
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one of the unplanted trays was treated with 300 μ​l MeJA solution and compared to another tray that was treated 
with 300 μ​l ethanol. We included three replicates per treatment. Each plant replicate comprised a pool of 30 plants.

Sample collection.  Bulk soil and rhizosphere samples.  All samples were collected 72 h post-MeJA treat-
ment (Fig. S5). For bulk soil samples, soil was collected in sterile tubes and then stored at −​80 °C until further 
processing. For rhizosphere soil samples, roots were carefully removed from each pot, excess soil was removed by 
shaking and that remaining closely adhered to the roots was considered to be rhizosphere soil3. For DNA extrac-
tion, rhizosphere soil was recovered by shaking roots in sterile 50 ml tubes each containing 25 ml sterile phos-
phate buffer (Na2HPO4 7.1 g, NaH2PO4·H2O 4.4 g, amended to 820 mL, pH 7.0, 0.1 M) for five min at 250 rpm. 
After shaking, roots were transferred to new tubes and rhizosphere soil was pelleted by centrifugation at 12,000 g 
for 3 min then transferred to −​80 °C storage until further processing. For MicroRespTM (James Hutton Institute, 
Invergowrie, Scotland, UK)37, rhizosphere soil was physically separated from roots using sterile gloves.

Root and shoot endophytic samples.  After removal of rhizosphere soil, root tissues were washed with distilled 
water and 0.1% Silwet L-77 in phosphate buffer three times38, sonicated at 20 kHz for five min to remove rhizo-
plane microorganisms24, washed in sterile phosphate buffer, air dried, ground in liquid nitrogen and then stored 
at −​80 °C for DNA extraction. For shoots, half of the tissues were immediately submerged in liquid nitrogen and 
stored at −​80 °C for RNA extraction (Fig. S5). The other half were washed with 0.1% Silwet L-77 in phosphate 
buffer three times, surface sterilised using 0.5% (v/v) hypochlorite for two min, air dried, ground in liquid nitro-
gen and then stored at −​80 °C for DNA extraction.

Figure 5.  Heatmap summarising variation in the composition of bacterial communities between bulk soil 
and the wheat root rhizosphere with or without MeJA treatment. Each Operational Taxonomic Unit (OTU) 
has a unique numeric identifier shown in square brackets that is consistent with those shown in other figures. 
OTUs highlighted in blue differ between bulk soil and the wheat rhizosphere (P <​ 0.05).
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Determination of plant growth.  The MeJA treated and non-treated wheat seedlings were collected 72 h 
post-treatment and root attached soils were thoroughly removed by washing under distilled water. Thirty plants 
were pooled in each bioreplicate, and three bioreplicates were included for each treatment. Shoots and roots 
samples were cut to separate and oven dried (65 °C) for three days, and then the weight of wheat roots and shoots 
were recorded.

Quantification of JA signalling pathway-related transcripts.  Total RNA was extracted from wheat 
shoots using the SV Total RNA Isolation Kit (Promega) according to the manufacturer’s recommendations. 
The cDNA was synthesised by reverse transcription of 1.5 μ​g of total RNA using the Superscript III kit (Life 
Technologies) and both random hexamers and oligo dT primers. Quantitative real-time PCR (qRT-PCR) assays 
were performed on a ViiA™​ 7 sequence detection system (Applied Biosystems, USA). Ten JA defence-related 
genes in wheat, namely PR1.1, PR2, PR4a, PR5, PR9, WCI2, WCI3, CHI3, TaAOS and LIPASE were examined 
for gene expression in shoots. Primer sequences are shown in Table S2. The wheat 18S rRNA gene was used as 
an internal reference gene for normalisation. PCR conditions and the relative expression of each target gene was 
investigated as previously described6.

DNA extraction and 16S rRNA gene amplification and sequencing.  For bulk soil and rhizos-
phere samples, DNA was extracted from two grams of soil using the Power Soil DNA Isolation kit (MO BIO 
Laboratories, Carlsbad, CA) according to the manufacturer’s recommendations. For root and shoot samples, 
DNA was extracted from 0.2 g plant tissue using a CTAB method39. Extracted DNA was then quantified using a 
QubitTM fluorometer with Quant-iT dsDNA BR Assay Kit (Invitrogen) and normalised to 1 ng μ​L−1 and 20 ng μ​l−1  
for soil and plant extracts, respectively.

Bacterial 16S rRNA genes were amplified by PCR with 803 F (5′​-ATT AGA TAC CCT GGT AGT C-3′​) and 
1392wR (5′​-ACG GGC GGT GWG TRC-3′​) for bulk soil and rhizosphere samples. PCR primers pairs of 799 F 
(5′​-AAC MGG ATT AGA TAC CCK G-3′​) and 1193 R (5′​-ACG TCA TCC CCA CCT TCC-3′​) were used for the 
amplifications of root and shoot endophytic bacteria. The primer pair 799 F and 1193 R spans the hypervariable 
regions V5-V6-V7 of the 16S rRNA gene and amplifies preferentially archaeal and bacterial DNA and avoids 
amplification of plant eukaryotic DNA38. For the above two primer pairs, B adaptor (5′​-CCT ATC CCC TGT 
GTG CCT TGG CAG TC-3′​) was linked to a key (TCAG) and connected to template specific forward primers. 
An adaptor (3′​-CCA TCT CAT CCC TGC GTG TCT CCG AC-5′​) was linked to key (TCAG) and sample specific 
MID, and then was connected to template specific reverse primer. The MID sequence contained a five-base bar-
code sequence positioned between the primer sequence and the adapter.

Bacterial and archaeal 16S rRNA genes in soil and endophytic roots and shoots were amplified by PCR which 
was carried out in a 25 μ​L reaction containing 14.75 μ​L ultra-pure water, 5.0 μ​L 5 ×​ phire buffer, 1.25 μ​L 10 μ​M 
dNTPs, 1.25 μ​L 10 μ​M forward primer, 1.25 μ​L 10 μ​M reverse primer, 0.5 μ​L phire® hot start II, and 1 μ​L of DNA 
template (1 and 20 ng for soil and plant samples, respectively). PCR conditions were 30 s at 98 °C for initial dena-
turation, 29 cycles of 10 s at 98 °C, 30 s at 56 °C for the annealing step and 45 s at 72 °C, with 7 min of 72 °C for final 
extension step.

Amplicons of the 16S rRNA gene (~400 bp) generated by PCR primers 799 F and 1193 R were excised from an 
agrose gel (1.5%) and were further purified using a Wizard® SV Gel and PCR Clean-Up System (Promega). After 
purification, amplification products were quantified using a Qubit™​ fluorometer with Quant-iT dsDNA HS Assay 
Kits (Invitrogen), normalised to 25 ng μ​L−1 per sample and then pooled for 454 pyrosequencing. Sequencing was 
performed by Macrogen (Seoul, Korea).

Processing of sequence data.  Data were processed as described previously40. Briefly, sequences were qual-
ity filtered and dereplicated using the QIIME script split_libraries.py with the homopolymer filter deactivated41, 
checked for chimeras against the GreenGenes database (October 2013 release) using UCHIME ver. 3.0.61742, 
homopolymer error corrected using Acacia43 and then subjected to the following procedures using QIIME: (1) 
OTUs were picked at 97% similarity, (2) OTU representative sequences were assigned GreenGenes (October 
2013) taxonomy using BLAST, and then (3) tables with the abundance of different operational taxonomic units 
(OTUs) and their taxonomic assignments in each sample were generated. The number of reads was rarefied to 
1,250 per sample to allow comparisons of diversity without the bias of uneven sampling effort. The mean number 
of OTUs (observed richness) and Simpson’s Diversity Index values corresponding to 1,250 sequences per sample 
were calculated using QIIME.

Microbial community activity.  Community-level physiology profiles (CLPPs) were generated by char-
acterising the induced respiratory responses of microorganisms associated with 0.4 g of each soil sample to 20 
substrates using MicroRespTM 37 as described in Liu et al.44. The substrates included carboxylic acids (citric acid, 
methyl pyruvate, oxalic acid, D+​ galacturonic acid and succinic acid), carbohydrates (beta-d-fructose, D-(+​)- 
trehalose, D-glucose, L-malic acid, D-xylose, mannitol, L-(+​) Arabinose, cellulose), amino acids (L-alanine, 
gamma-aminobutyric acid, L-arginine, L-Asparagine), urea, uric acid and tween 40. Milli-Q water was added to 
controls. Fluorescein diacetate (FDA) hydrolysis assays were used to provide a measure of total microbial enzyme 
activity and were performed as described by Green et al.45.

Statistical analyses.  The effect of MeJA treatment on enzyme activities and the richness and equitability 
of bacterial communities was investigated using ANOVA. Differences in transcript abundances and wheat dry 
weights were assessed using two tailed t-tests. The effects of MeJA treatment on the composition of bacterial 
communities and on substrate utilisation patterns were investigated using Permutational Multivariate Analysis 
of Variance (PERMANOVA). PERMANOVA was performed using Hellinger transformed OTU abundances. 
Differences in the abundances of individual OTUs between treatments were identified using ANOVA with 
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posthoc Tukey’s HSD tests. All analyses were implemented using R (version 2.12.0). Differences in the compo-
sition of microbial communities or the utilisation of substrates between samples were visualised using principal 
component analysis (PCA) and/or heatmaps.
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