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Manipulation of the soil microbiome holds great promise for

contributing to more environmentally benign agriculture, with

soil microbes such as Pseudomonas promoting plant growth

and effectively suppressing pathogenic microorganisms. Next-

generation sequencing has enabled a new generation of

research into soil microbiomes, presenting the opportunity to

better understand and exploit these valuable resources. Soil

bacterial communities are both highly complex and variable,

and contain vast interspecies and intraspecies diversity, both

of which respond to environmental variation. Therefore, we

propose that a combination of whole microbiome analyses with

in-depth examination of key microbial taxa will likely prove the

most effective approach to understanding rhizosphere

microbial interactions. This review highlights recent efforts in

this direction, based around the important biocontrol bacterium

Pseudomonas fluorescens.
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Introduction
The Green Revolution boosted global agricultural

production in the 20th century through innovations

centred on the development of high-yielding dwarf crop

varieties that respond well to chemical fertilizers and

other agrochemicals. It is estimated that this process

saved between 18–27 million hectares of land from being

converted to agriculture [1] and that the associated yield

gains prevented over one billion people from starving.

However, the continued heavy use of agrochemicals is

costly, ecologically damaging, and unsustainable in the

medium to long term. The use of precision agriculture,

involving the better use of external inputs alongside

genetically modified crops with more efficient nutrient-

use characteristics is likely to be hugely important in
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achieving future productivity gains [2]. Additionally, the

soil microbiome holds great promise for contributing to

more environmentally benign agriculture. Naturally

occurring soil-dwelling microbes influence plant health,

resource-use efficiency and biocontrol [3,4]. However,

their potential has been under-exploited to date. Recent

advances in nucleic acid sequencing technologies have

enabled a new generation of research into soil microbial

communities, and offer the opportunity to better under-

stand, and hence exploit, this resource.

Advances in soil microbiome analysis
Soil microbiomes are intricate, highly diverse ecosystems

containing thousands of interacting microorganisms—a

recent analysis of the microbiome of disease-suppressive

soils identified over 33 000 bacterial and archaeal OTUs

in the sugar beet rhizosphere [5�]. Recently, the ability to

rapidly sequence and identify DNA extracted from soil

samples has enabled the development of several powerful

metagenomic analysis techniques [6]. For example, inter-

rogation of the genetics of whole microbial communities

allows us to probe the physiological characteristics and

potential of plant-associated microorganisms [7,8]. Ampli-

con sequence analysis of marker genes, typically 16S

rRNA in the case of bacteria, enable us to characterize

the relative abundance of different species in

phyllosphere and rhizosphere communities [9], while

metatranscriptomic approaches may be used to examine

the metabolic activities and regulatory mechanisms that

function in different environments [10–12].

While much has been learned about the relative

abundance of different microbial phyla and genera, and

the functional and metabolic characteristics of the plant

and soil-associated microbiome [13,14], it is also impera-

tive to understand the metabolic, natural product and

genomic diversity associated with individual species in

the soil system to obtain a better understanding of micro-

bial function [15�,16–18,19�]. For example, we now know

that the metabolic behaviour of the nitrogen fixing spe-

cies Rhizobium varies profoundly between the rhizo-

spheres of different plant species [20]. Furthermore,

environmental variation profoundly influences the rela-

tive abundance of individual genes in the population of a

single species group [21�,22]. In the near future, newly

developed methods for microbial isolation and culturing

will markedly increase our capacity to understand both

the overall microbiome, and the individual species within

it [23�,24]. Total microbiome approaches by definition are

more superficial in their analyses, while complete

assignation of functional genes to particular microbial

OTUs in the soil is challenging, although the
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reconstruction of a draft genome from a novel soil metha-

nogen indicates that this may become more commonplace

in the future [25]. Nonetheless, in reality the reconstruc-

tion of discrete microbial genomes will always be prob-

lematic. Bacterial genomes are composed of multiple,

often plastic genetic elements, leading to problems in

assembling genome complements. This is especially the

case in complex communities where species complexes

are commonplace. Therefore, advances in sequence anal-

ysis will most likely give rise to the creation of ‘species

metagenomes’. The production of broader culturable

metagenomes [26], coupled with an increased ability to

sequence individual microbial isolates will be useful for

verifying genome reconstruction from metagenomes, and

also for use in manipulative experimentation. We propose

that a combination of total community studies, with more

in-depth analysis of key culturable microbial taxa will

further our understanding of rhizosphere microbial inter-

actions more effectively than either approach taken in

isolation.

Biocontrol pseudomonads in the soil
microbiome
As the harmful environmental impacts of chemical pes-

ticides become more apparent, manipulation of the soil

and plant-associated microbiota is gaining increasing rec-

ognition as a potential alternative treatment for a range of

crop diseases and pests. This may occur on a whole-

microbiome level, for example through the development

of suppressive soils or the control of potato scab by

irrigation, or alternatively through the stimulation/intro-

duction of key biocontrol microorganisms, such as Bacillus
or Pseudomonas spp. Many important fungal and bacterial

diseases including fire blight (Erwinia amylovora, [27]),

potato scab (Streptomyces scabies, [28]) and take-all (Gaeu-
mannomyces graminis var. tritici, [29]) are effectively sup-

pressed by members of the Pseudomonas fluorescens species

group. These important, widespread soil-dwelling

microbes have an established role in the development

of take-all suppressive soils [29–33], where the fungal

pathogen is maintained at a low level in the soil but is

unable to cause disease. Take-all is a destructive fungal

crop disease that causes substantial losses in cereal crops

[34,35], and is therefore an attractive target for the devel-

opment of Pseudomonas biocontrol agents. However, to

date efforts in this direction have been plagued by incon-

sistency [36], in large part due to the huge complexity of

the plant/pathogen/soil ecosystem.

Pseudomonas fluorescens
P. fluorescens are a diverse clade of Gram negative, g-pro-
teobacteria that non-specifically colonise a number of

different plant species. They represent a major constitu-

ent of the rhizosphere microbiome, and exploit root

exudates as source of nutrients and energy. P. fluorescens
spp. are flexible, generalist bacteria that are able to

colonise many different environmental niches and carbon
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sources. Their genomes are correspondingly complex,

encoding around 6000 genes, and with a high degree of

intraspecies diversity—the Pseudomonas core genome

represents as little as 20% of an individual bacterial

genome [19�], with much of the accessory genome given

over to signal transduction, phenotypic output loci and

secondary metabolism [15�,19�]. The high degree of

genomic and metabolic plasticity among the soil pseudo-

monads allows both individual bacteria, and the microbial

population as a whole, to effectively adapt to different

plant–soil–microbiome environments.

Pseudomonas plant colonisation is a complex, tightly con-

trolled process that begins with chemotaxis into the

rhizosphere along a gradient of root exudates, followed

by surface association and migration on the rhizoplane

[37], and ultimately the formation of a bacterial biofilm

[38�]. The early stages of colonisation are facilitated by

flagella and type IV pili, and the production of biosurfac-

tants, which together enable coordinated swarming motil-

ity [37,39]. The later stages are characterised by the

formation of micro-colonies on the plant surface, then

establishment of a mature biofilm. In addition to bacterial

cells this protective matrix is composed of proteinaceous

adhesins [40], lipopolysaccharide [41] and various exopo-

lysaccharide molecules [38�,42]. To successfully colonise

the plant rhizosphere, many Pseudomonas spp. produce

enzymes that enable them to manipulate plants, encour-

aging growth and disrupting stress responses. For exam-

ple, enzymes that synthesise and catabolise auxins [15�]
and plant growth-promoting volatiles such as 2-3-buta-

nediol and acetoin [43] have been identified in several

Pseudomonas genomes [15�,19�]. In addition, many Pseu-
domonas spp. produce ACC deaminase, which protects

plants from environmental stresses by short-circuiting

ethylene production [44].

P. fluorescens in the rhizosphere is under continuous attack

from other members of the soil microbiome. This takes

the form of competition and antagonism from other

microorganisms, as well as predation by nematodes and

insects. To counter this second threat, and to prevent

insect predation of their host plants, many Pseudomonas
spp. produce insecticidal molecules such as the Mcf,

IPD072Aa and Fit toxins [15�,45,46]. Meanwhile, to fight

against hostile bacteria, oomycetes and fungi, soil Pseu-
domonas spp. secrete bacteriocins [47,48], alongside toxins

and other natural products using specialised protein

secretion pathways. Type III and Type VI complexes

inject toxins and effector proteins into eukaryotic and

bacterial cells, and contribute to various cytotoxicity and

virulence-associated phenotypes [49]. Type II secretion

systems are diverse protein exporters, and facilitate the

secretion of bacteriocins, surface adhesins and extracel-

lular enzymes [40]. Pseudomonas secrete a number of

these exoenzymes including plant tissue-degrading

lyases, proteinases and chitinases that contribute to
www.sciencedirect.com
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Soil Pseudomonas genotypic richness is associated with more severe

disease incidence in wheat roots.

Differences in Pseudomonas fluorescens genotypic richness and take-

all disease incidence after year two, in response to cultivar planted in

year one (figure adapted from Mehrabi et al. [66�]).
biocontrol by hydrolysing fungal cell walls [50,51]. As well

as affecting plant behaviour, some Pseudomonas spp. also

disrupt signal transduction by other rhizosphere micro-

organisms, for example by producing AHL lactonase to

suppress quorum sensing [52].

Pseudomonas spp. also produce a diverse array of secreted

natural products. These have varied functions, although

many serve to kill or suppress plant predators and com-

peting microorganisms [15�,53]. Even those molecules

with a well-defined alternative function often function as

antimicrobials. These include the metal ion-chelating

siderophores, which also inhibit pathogenic fungi by

inducing metal ion starvation in model rhizospheres

[54]. Phenazines; flavin coenzyme analogues that func-

tion as electron shuttles in microoxic environments [55]

also inhibit electron transport in plant pathogens [56,57],

and are linked to ecological fitness in take-all infected

wheat rhizospheres [58]. Likewise, viscosin and other

cyclic lipopeptides act both as surfactants to enable

swarming motility [37], and antibiotics that solubilise cell

membranes [59]. Soil Pseudomonas spp. also produce a

host of dedicated antimicrobials, such as the antifungal

compounds pyoluteorin and pyrrolnitrin [60,61], phloro-

glucinols like 2-4-DAPG [62], and hydrogen cyanide [63].

A recently conducted metabolic profiling analysis based

on soil isolates from Rothamsted Research (Harpenden,

U.K.) demonstrated a remarkable level of natural product

diversity within the rhizosphere Pseudomonas population,

with isolates from a single wheat field producing a com-

parable natural product complement to an extensive

library of global isolates from diverse environmental

sources [64�].

Depending on the exact conditions in their environment,

P. fluorescens populations select from the huge potential

within the accessory genome to produce an optimal

genetic and metabolic response. Clearly, if we can define

the genetic loci and phenotypic characteristics that con-

tribute to rhizosphere colonisation and biocontrol, and

determine how these change with different plant/soil

environments, we will be much better placed to exploit

the soil Pseudomonas population to develop better crop

management strategies and novel biocontrol agents.

Analyzing genomic diversity in plant
associated Pseudomonas populations
A recent two-year experiment at Rothamsted [65] pre-

sented us with an opportunity to examine the relationship

between the Pseudomonas genome and the environment,

in the context of infection with take-all. This experiment

compared high (Hereward) and low (Cadenza) take-all

inoculum building (TAB) wheat varieties, and the impact

on crop yield in the second wheat [65]. We isolated

hundreds of Pseudomonas CFUs from the rhizospheres

of second year wheat plants, and subjected them to
www.sciencedirect.com 
extensive phenotypic, genotypic and genomic analysis,

including whole genome sequencing of 19 isolates.

A phylogenetic tree of all Pseudomonas isolates based on

ERIC PCR profiles and housekeeping gene sequences

showed that the wheat variety grown in year one exerted

considerable selective pressure on both the extent and

nature of Pseudomonas genomic diversity. Hereward plots

showed increased take-all build-up and Pseudomonas
genomic richness, alongside yield losses of �3 t/ha (Fig-

ure 1) [66�]. However, while distinct clusters of genotypes

were observed when year one wheat variety was consid-

ered, no pattern was observed with cultivars from year

two. These findings agree with a 16S rRNA gene ampli-

con sequence analysis of the rhizosphere soil in each plot,

which showed that year one Hereward plots contained

significantly larger Pseudomonas populations, alongside

several different genera of saprophytes [21�].

We then took a statistical approach to combine our various

datasets, conducting correlation coefficient analyses to

identify the phenotypes and genes that were selected

by different cultivar combinations over the course of the

field trial. This analysis identified several interesting

correlations between phenotypes, genotypes, and the

wheat varieties from which strains were isolated [21�].
At least two distinct, mutually exclusive phenotypic/

genotypic groups emerged from our analysis. The first

of these showed increased levels of antimicrobial activity

towards Streptomyces spp., and contained operons for

cyclic-lipopeptide and LPS biosynthesis, type VI secre-

tion and toxin production. The second group produced
Current Opinion in Microbiology 2017, 37:23–28
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Figure 2
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A model for year 1 wheat cultivar selection of soil Pseudomonas genotypes.

High take-all levels in the soil of first year Hereward plots lead to increased plant disease and root senescence. This in turn leads to increased

populations of saprophytic microorganisms (green), and an associated shift in the Pseudomonas population towards a more aggressive, ‘territorial’

morphotype (blue). Conversely, where take all levels are low, the Pseudomonas population shifts towards phenotypes including metal ion

scavenging and plant hormone production (red).
high levels of fluorescent siderophores, a phenotype that

strongly correlated with acetoin catabolism loci [21�].

Excitingly, we also saw correlations between individual

Pseudomonas genes and the wheat varieties grown in the

first year. The operons associated with year one Hereward

cultivation (high TAB) also positively correlated with

Streptomyces suppression, while loci that positively

correlated with year one Cadenza (low TAB) strongly

associated with increased pyoverdin production [21�]. In

addition, Pseudomonas isolates from this field experiment

were used to construct synthetic community fungal

antagonism assays [1]. Increased Pseudomonas spp.

richness positively correlated with in vitro pathogen

growth. This supported the field observation that first

year Hereward plots, with a higher rhizosphere genotypic

richness than first year Cadenza, developed more severe

take-all disease, demonstrating a negative biodiversity

effect (Figure 1). We propose that the increased levels

of senescent root tissue and saprophytic microorganisms

that accompany Hereward growth in year one may lead to

an increased abundance of pseudomonads that are

adapted to niche competition with other microbes,

whereas the comparatively benign environment

associated with Cadenza rhizospheres favours Pseudomo-
nas genotypes that are better adapted to plant–host com-

munication and increased production of metal scavenging

siderophores (Figure 2).
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Clearly, it remains to be established whether the model

we propose for the interplay between wheat, take-all and

Pseudomonas is correct, or whether there is a different

reason for the population shifts we see. Nonetheless the

impact of the first year wheat cultivar was still detectable

two years after the beginning of the experiment, consis-

tent with substantial selective pressure on the first-year

rhizosphere population. A second long-term wheat exper-

iment that will capture the full disease epidemic is

underway, as are several laboratory experiments including

root exudate metabolomic analysis, to strengthen and

refine our initial conclusions. Our experiments indicate

that first year wheat genotype affects both the overall

Pseudomonas population, and also the distribution of indi-

vidual genotypes in the second year rhizosphere

[21�,65,66�]. In turn, these experiments support our con-

tention that a better understanding of the soil microbiota,

combined with smart manipulation of plant cropping

systems may present a reliable future route to sustainable

yield improvement and biocontrol.
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