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ABSTRACT

Fungal diseases of plants are responsible for major losses in
agriculture, highlighting the need for rapid and accurate
identification of plant pathogens. Disease outcomes are often
defined not only by the main pathogen but are influenced by
diverse microbial communities known as the microbiome at sites of
infection. Here we present the first use of whole genome shot-gun
sequencing with a portable DNA sequencing device as a method
for the detection of fungal pathogens from wheat (Triticum
aestivum) in a standard molecular biology laboratory. The data
revealed that our method is robust and applicable to the diagnosis
of fungal diseases including wheat stripe rust (caused by Puccinia
striiformis f. sp. tritici), Septoria tritici blotch (caused by
Zymoseptoria tritici), and yellow leaf spot (caused by Pyrenophora

tritici repentis). We also identified the bacterial genus
Pseudomonas co-present with Puccinia and Zymoseptoria but not
Pyrenophora infections. One limitation of the method is the over-
representation of redundant wheat genome sequences from
samples. This could be addressed by long-range amplicon-based
sequencing approaches in future studies, which specifically target
nonhost organisms. Our work outlines a new approach for
detection of a broad range of plant pathogens and associated
microbes using a portable sequencer in a standard laboratory,
providing the basis for future development of an on-site disease
monitoring system.
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Plant diseases, especially those caused by fungal pathogens,
jeopardize global crop biosecurity. Increased global trade, human
migration, environmental changes, and the accelerated emergence
of virulence have been identified as causes for increasing prevalence
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of diseases in plants and animals (Fisher et al. 2012). To prevent and
manage diseases, rapid detection and identification of their causal
agents are crucial. This is particularly important for outbreak
management during the incursion of virulent new isolates that
overcome classical methods of control such as the use of resistant
crop varieties (Bhattacharya 2017; Pretorius et al. 2000). Tradi-
tional methods for crop disease diagnosis rely largely on the ex-
pertise of pathologists whom identify diseases initially by eye in the
field. While molecular methods of pathogen detection also exist,
these are generally only capable of identifying specific diseases with
low amounts of variation (De Boer and Lopez 2011). For example,
the enzyme-linked immunosorbent assay (ELISA) have been ap-
plied for the detection of tree pathogen Xylella fastidiosa (Sherald
and Lei 1991). Recently, other optical sensor-based methods have
been developed for the detection, identification, and quantification
of plant diseases (Mahlein 2015). This method has been used to help
smallholder farmers for the disease and pest control (PlantVillage,
https://plantvillage.psu.edu/). Conventional pathology, however,
remains the primary means of pathogen identification and harbors
certain limitations: (i) It relies heavily on the physical appearance of
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disease symptoms. (ii) It has difficulty detecting pathogens that do
not infect aerial parts of the plant. (iii) Coinfections may lead to
conflicting visual symptoms. (iv) No method currently exists for the
rapid identification of unknown pathogens during outbreaks—a
limitation epitomized by the recent, devastating incursion of South
American races of wheat blast fungus in Bangladesh (Callaway
2016).

DNA sequencing-based methods have been applied to address
limitations in detection and monitoring of environmental microbial
communities (Nezhad 2014). Such assays rely largely on ampli-
fication and sequencing of small conserved regions called meta
barcodes from pathogen genomes, including the internal transcribed
spacer region or Elongation Factor 1 alpha (EFla) and Beta-
tubulin genes for fungal species and 16S ribosomal RNA sequences
for bacteria (Janda and Abbott 2007; Raja et al. 2017). Combining
multiple conserved gene loci, known as multilocus sequence typing
(Maiden et al. 1998), can discriminate closely related species based
on single nucleotide polymorphisms (SNPs) within amplicon se-
quences. This has been used, for example, to distinguish different
closely related species of Candida that pose distinct risks and
epidemiological outcomes (Odds and Jacobsen 2008). Amplicon
sequencing also allows for characterization of the microbial com-
munity, the microbiome, within a sample. The microbiome can
impact plant function, for example, on altering flowering time
(Panke-Buisse et al. 2015) or promoting colonization of fungal
pathogens such as Botrytis cinerea (Ritpitakphong et al. 2016).
Furthermore, the microbiome is likely to contain organisms that
interact with disease-causing agents and, as some of these organisms
have antimicrobial activities against plant pathogens, could poten-
tially be harnessed for biocontrol strategies (Ellis 2017). Restrictive
read lengths generated by the Illumina sequencing platform limits
sequence-based identification of microbial species. Standard Illumina
sequencing only allows for a maximum amplicon length of 500 bp to
be sequenced and, as such, only the genetic variation present within
500 bp is available for taxonomic assignment of the organism in
question (Benitez-Paez and Sanz 2017). Use of PCR also biases the
abundance of individual amplicons, making estimation of population
frequencies problematic (Kennedy et al. 2014).

Next-generation DNA sequencing platforms have developed
rapidly during the last half-decade, overcoming the read length
issue and facilitating the identification of microbial species
(Benitez-Paez and Sanz 2017). Multiple single molecule, long-read
sequencing technologies are currently in use. Most predominant
among these are single molecular real-time (SMRT) sequencing
(PacBio) and nanopore sequencing (MinlON; Oxford Nanopore
Technologies (ONT)). PacBio SMRT sequencing relies on the
detection of fluorescent nucleotides incorporated into a single
DNA molecule during its synthesis within a nanoscale observa-
tion chamber (Ardui et al. 2018). Nanopore sequencing enables
direct sequencing of native DNA by measuring voltage changes
across an artificial membrane when a single DNA molecule passes
through a nanopore embedded in the membrane of a flowcell (Jain
et al. 2016). Advantages of nanopore sequencing include its rel-
atively low cost, pocketsize form and the potential for real-time data
analysis, while current disadvantages include relatively low per
read accuracy of around 90% (Leggett and Clark 2017). Because the
MinlION is a mobile technology independent of large sequencing
facilities, it has been useful for on-site sample sequencing in ex-
treme environments such as microbial paleo mats in the Antarctic
(Johnson et al. 2017). For rapid pathogen identification, studies
have shown a turnaround time of 6 h for bacterial from clinical
samples with MinlON (Charalampous et al. 2018), and from
seconds to up to 4 h for detecting cassava virus in Africa (Boykin
et al. 2018)—both unachievable with previous technologies. For

antibiotic resistance, Bfinda et al. (2018) reported their identifi-
cation of known resistant bacterial strain within five minutes from
real time MinION data. Moreover, the MinION provides signifi-
cantly longer sequencing reads (~10 kb) than other sequencing
platforms such as Illumina, allowing for more genetic information
per read and thus more precise identification of the organism from
which the read is derived (Benitez-Paez and Sanz 2017; Benitez-
Péez et al. 2016). Although recent studies have shown important
advances in identification of bacterial pathogens using nanopore
sequencing from clinical samples (Mitsuhashi et al. 2017; Schmidt
et al. 2017), little has been done testing this new sequencing
platform in terms of plant pathogens detection and microbiome
profiling of diseased plants.

Here, we tested nanopore sequencing for disease diagnosis in
field-grown wheat plants and explored its potential for microbiome
profiling. We designed a whole-genome shot-gun sequencing
(WGS) workflow for identification of major pathogen species from
field samples and profiling of microbes present in these samples to
the species level. As a proof-of-concept, we applied our sequencing
workflow to wheat leaves infected with known fungal pathogens
sampled from the field and a fungicide treated control. By mapping
sequencing reads to databases, we successfully detected all fun-
gal diseases present in the infected samples including stripe rust
(caused by Puccinia striiformis f. sp. tritici), Septoria tritici blotch
(caused by Zymoseptoria tritici), and yellow leaf spot (caused by
Pyrenophora tritici repentis), and found one disease (Septoria
nodorum blotch, caused by Parastagonospora nodorum). We also
conducted preliminary characterization of the microbiomes asso-
ciated with those diseases, identifying the bacterial genus Pseu-
domonas as co-present with Puccinia and Zymoseptoria infections.
Our results suggest that portable nanopore sequencing has a con-
siderable potential for adaptation to a broad range of crop disease
diagnoses and environmental monitoring applications under field
conditions.

MATERIALS AND METHODS

Sample collection. Wheat cultivar Crusader (Advanta Seeds
Pty. Ltd.) seeds were planted in the disease nursery field on May
2016 at the Wagga Wagga Agricultural Institute (New South Wales
[NSW], 35°02'24.3"'S, 147°19'09.5"'E) with daily irrigation.
Wheat straw infected the previous season with Septoria tritici blotch
and yellow leaf spot was allowed to stand in the field to promote
development of pseudothecia. This infected material was used to
manually inoculate plants in the nursery field at the tillering growth
stage (4 to 5 weeks post-emergence) while stripe rust infections
occurred naturally at jointing stage (7 to 9 weeks post-emergence).
Healthy or diseased plants were diagnosed by a plant pathologist
from the NSW Department of Primary Industries via symptom-
atology before samples were collected during September 2016.
Five different treatment groups were collected into five separate
containers. These included four infection types: three single in-
fections (Puccinia striiformis f. sp. tritici, Z. tritici, and Pyrenophora
tritici repentis) and one double infection (Puccinia striiformis f. sp.
tritici + Z. tritici), and a fungicide-treated control. For each treatment
group, three separate entire wheat tillers were pooled in one con-
tainer and shipped to the Rathjen laboratory, Research School of
Biology, The Australian National University. Each biological
replicate (n = 4) consisted of two independent leaf cuts (~100 mg)
from each treatment group containing visible disease symptoms or
not in case of the control. The two leaf of each biological replicate
were transferred into 2-ml Eppendorf tubes containing one 5 mm
metal bead. All tubes were labeled and stored at —80°C prior to
DNA extraction.
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DNA extraction. DNA extractions were performed according to
Hu (2016). Briefly, 100 mg of leaf tissue was homogenized and
cells were lysed using cetyl trimethylammonium bromide (CTAB,
Sigma-Aldrich) buffer (added RNAse T1, Thermo Fisher, 1,000
units per 1750 ul), followed by a phenol/chloroform/isoamyl al-
cohol (25:24:1, Sigma-Aldrich) extraction to remove protein and
lipids. The DNA was precipitated with 700 pl of isopropanol,
washed with 1 ml of 70% ethanol, dried for 5 min at room tem-
perature, and resuspended in 50 pl of TE buffer containing 10 mM
Tris and 1 mM EDTA at pH 8. DNA extractions were performed
independently for each biological replicate (n = 4), with the operator
blind to the identity of each sample. After extraction, DNA was
purified with one volume of Agencourt AMPure XP beads (Beckman
Coulter, Inc.) according to the manufacturer’s protocol and stored at
4°C. Quality and average size of genomic DNA was visualized by gel
electrophoresis with a 1% agarose gel for 1 h at 100 volts. Repre-
sentative gel images for replicate 3 and 4 are shown in Supplementary
Figure S1. DNA was quantified by NanoDrop and Qubit (Life Tech-
nologies) according to the manufacturer’s protocol. DNA quality and
purity was evaluated as described previously (Schalamun et al. 2018).

Library construction and sequencing. For each biological
replicate, one PCR-based barcoded 1D sequencing libraries were
constructed using 1D PCR barcoding workflow (SQK-LSK107 and
EXP-PBC001, batch number EP01.10.0005) as previously de-
scribed in Hu and Schwessinger (2018) with the omission of the
DNA shearing step. Briefly, a dA-tailing reaction was performed on
700 ng of genomic DNA from each sample using the NEBNext
Ultra II End-repair/dA-tailing kit (New England Biolabs). Repaired
DNA was cleaned up using one volume of AMPure XP beads,
washed on a magnetic rack using 70% ethanol, and eluted with 31 ul
of nuclease-free water. Thirty microliters of eluate was used for
barcode adapter ligation via the NEB Blunt/TA Ligase Master Mix
(New England Biolabs) and Barcode Adapter Mix (ONT 1D PCR
barcoding kit EXP-PBCO001), followed by another wash step on one
volume of AMPure XP beads. Twenty nanograms of the adapter-
ligated template in 2 pl of nuclease free water was added to each
barcoding PCR reaction with 50 pl of LongAmp Taq 2x Master
Mix (New England Biolabs), 46 ul of water, and 2 ul of PCR
Barcodes (ONT 1D PCR barcoding kit EXP-PBC001). The PCR
was performed as follows: denaturation at 95°C for 3 min, 15 cycles
of 95°C/15 s; 62°C/15 s; 65°C/150 s, a final extension step at 65°C
for 5 min. Barcoded DNA was purified using one volume of
AMPure XP beads and pooled into 1-ug fractions in a total of 45 ul
to which 5 ul of DNA CS control (ONT 1D ligation sequencing kit
SQK-LSK107) was added. A further dA-tailing reaction was
performed as above followed by purification on with one volume of
AMPure XP beads. DNA was eluted in 31 pl of nuclease-free water.
Adapter ligation was carried out using 30 pl of end-prepped DNA,
20 ul of Adapter Mix (ONT 1D ligation sequencing kit SQK-
LSK107), and 50 pl of NEB Blunt/TA Ligase Master Mix. The
adapter-ligated DNA library was purified with one volume of
AMPure XP beads using the Adapter Beads Binding buffer (ONT 1D
ligation sequencing kit SQK-LSK107) for washing and eluted in
15 ul of elution buffer (ONT 1D ligation sequencing kit SQK-LSK107).

Sequencing reactions were performed independently for each
biological replicate on a MinION flowcell (R9.4, ONT) connected
to a MK1B device (ONT) operated by the MinKNOW software
(version 1.5.2 and version 1.6.11). Each flowcell was primed with
1 ml of priming buffer comprising 480 pl Running Buffer Fuel Mix
(RBF, ONT) and 520 pl of nuclease free water. Twelve microliters
of amplicon library was added to a loading mix including 35 pl of
RBF, 25.5 pl of Library Loading beads (ONT library loading bead
kit EXP-LLBO001, batch number EB01.10.0012), and 2.5 ul of water
with a final volume of 75 pl and then added to the flowcell via the

SpotON sample port. The “NC_48Hr_sequencing FLOMIN106_SQK-
LSK107” protocol was executed through MinKNOW after loading
the library. The sequencing run was restarted after 12 h and stopped
after 48 h.

Sequencing analysis. Raw fast5 files were processed via the
Albacore 2.0.2 software (ONT) for basecalling, barcode de-
multiplexing and quality filtering (Phred quality score of >7) fol-
lowing manufacturer’s recommendations. All reads that passed
quality filtering for each barcode were treated in parallel as follows:
firstly, NanoLyse (De Coster et al. 2018) was used to remove
lambda phage control DNA sequences; secondly, barcode and
adapter sequences were trimmed from the ends of reads using
Porechop (Wick et al. 2018). To identify middle adapter sequences
by Porechop, a 95% threshold was set, and reads with middle
adapter sequences were split into two sequences; thirdly, seqtk
(https://github.com/Ih3/seqtk) was used to convert the processed
fastq file into fasta format for further analysis. The two nucleotide
BLAST (blastn, Basic Local Alignment Search Tool, Altschul et al.
1990) searches were performed using the fasta files for each barcode
as queries: first, against a custom genome reference database that
contained the wheat reference genome (Clavijo et al. 2017), and the
genome sequence of three fungal species used in our study: Puc-
cinia striiformis f. sp. tritici: Schwessinger et al. (2018), accessed
09/2017; Z. tritici: Goodwin et al. (2011), version 2, accessed 09/
2017; Pyrenophora tritici-repentis: Manning et al. (2013), unmasked
assembly, accessed 09/2017. The genome of a fourth species
suggested to be absent from the studied wheat growing region,
Parastagonospora nordorum, as a negative control (Hane et al.
(2007), accessed 09/2017. Individual reads were assigned to have
originated from a specific DNA sequence based on their best
blastn hit (e-value of <0.01) (Zhang et al. 2000). Reads that did
not hit the custom-made database were captured using the
filterbyname.sh script from the bbmap script package (https://
sourceforge.net/projects/bbmap/). These reads were used as queries
to search against the National Center for Biotechnology Information
(NCBI) nucleotide database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/,
downloaded 09/2017) using blastn and the same settings and
species assignment criteria mentioned above. Two Python scripts
(QC_and_BLAST.py and creating_final_dataframe.py) that com-
bine all steps from quality control to BLAST outputs and construct
dataframes containing statistical and information from BLAST
searches for each read were deposited at https://github.com/
Yiheng323/Pathogen_Detection_and_Microbiome_scripts to facili-
tate the reproducibility of our results. All basecalled fastq data for
each sequencing run were deposited at NCBI Short Reads Archive
(SRA) under accession number PRINA493553. The sequencing
summary files and final dataframes were deposited as .tab files for
each replicate at https://doi.org/10.6084/m9.figshare.7138262.
The python scripts used for generating Figures 2 to 5 and Sup-
plementary Figures S2 to S7 were also deposited at https:/
github.com/Yiheng323/Pathogen_Detection_and_Microbiome_scripts.

RESULTS

Sequencing showed variations in yield and consistency in
barcode classification. We designed a pipeline for identification of
three known wheat pathogens from infected field samples using
MinlON sequencing. We infected three experimental field plots as
disease nurseries with their corresponding pathogens (Puccinia
striiformis f. sp. tritici for stripe rust disease, Z. tritici for Septoria
tritici blotch, and Pyrenophora. tritici-repentis for yellow leaf spot)
commonly found in New South Wales, Australia, and conducted
sampling during the 2016 to 2017 growing season (September).
The sequencing experiment included three steps (Fig. 1): (i)
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Pathologists collected three plants from each disease nursery field,
with visual confirmation of disease symptoms from three single
infections plus one double infection (Puccinia striiformis f. sp.
tritici + Z. tritici) and a negative control comprising the same wheat
variety treated with commercial fungicides at the 10- to 11-week
growth stage (3 months post-germination). Individual plants were
pooled by treatment type and shipped to the laboratory on ice for
processing. (ii) We extracted DNA from two independent leaf cuts
of each treatment type without knowing the identity of each
treatment to eliminate potential bias from operators. (iii) We bar-
coded each sample to enable pooling of all five sample types into
one sequencing run. The five wheat leaf samples were barcoded as
follows: leaves infected with one of the three fungal pathogens
(barcodes 1 to 3); leaves infected with two pathogens (barcode 4);
and fungicide-treated control without disease symptoms (barcode
5). We performed steps ii to iii four times independently as bi-
ological replicates, with step iii performed using a MinION 1D PCR
barcoding workflow (EXP-PBC001 and SQK-LSK107). The raw
data of each nanopore sequencing run were converted into fastq
sequencing reads using Albacore software (ONT), with a quality (Q)
score for each base estimating the likelihood of the identified base
being correct using the Phred scale (Ewing et al. 1998; Ewing and
Green 1998). Based on read mean Q scores, Albacore grouped reads
into pass (Q score >7) or fail (Q score <7) based on manufacturer’s
recommendations. We binned reads based on the barcode sequences
identified by Albacore at both ends of each sequencing read. If no
barcode sequence could be identified, we named the corresponding
read as unclassified. Overall, ~92 to 95% of the total sequence length
of all four sequencing runs passed quality filtering (Supplementary
Table S1). The total sequence length from the four runs varied from
682 to 5,100 megabase pairs (Mbp). The mean read length ranged
from 1,380 to 3,054 bp. Proportions of each barcode in each run were
relatively even, although 23.3 to 25.7% of the sequences were un-
classified in all four runs (Fig. 2).

Sequence-based identification correctly identifies the fungal
species causing wheat diseases. We performed blastn searches for
all quality-filtered reads against a custom genome reference data-
base. We assigned the origin of each read based on its best blastn hit
within each database (e-value <0.01) using a “winner-takes-all”
strategy which only considers the best match of each sequencing
read. The custom genome reference database contained the wheat

genome and four fungal genomes including Puccinia striiformis
f. sp. tritici, Z. tritici, Pyrenophora tritici-repentis, and Para-
stagonospora nodorum. These represent the host plant genome, three
fungal species present in infected field samples, and one fungal
species (Parastagonospora nordorum) not expected to be present in
the sampling area as a negative control. The majority of reads were
assigned to wheat sequences, comprising total sequence length of
90.1% in flowcell 1, 80.1% in flowcell 2, 92.7% in flowcell 3, and
91.4% in flowcell 4 (Fig. 3). We found that healthy leaf samples
(barcode 5) contained no or minor total length percentages of
pathogen-related sequences in all four replicates (<0.01%) (Fig. 4).
This indicates that our analysis method is robust and does not lead to
high background signals in healthy wheat samples (barcode 5).
Significantly higher proportions of total sequencing length (0.5 to
5.7%) from infected samples (barcode 1 to 4) were assigned as
pathogen genome-derived. In all cases, the pathogen genome iden-
tified by the highest total sequence length corresponded to the
pathogen causing the disease as identified by symptomatology (Fig.
4). This indicates that we are clearly able to identify the disease-
causing pathogen via our sequencing workflow in cases of single
infections. Infections with two pathogens (barcode 4) were identified
less clearly. In barcode 4 from all biological replicates, total sequence
length percentages assigned to Puccinia striiformis f. sp. tritici were
between 0.1 and 0.4%; close to or lower than the proportion assigned
to negative control species Parastagonospora nodorum. The total
relative sequence length identifying each major pathogen species
within each barcode were similar across all replicates, with around
0.6% of barcode 1 from Puccinia striiformis f. sp. tritici, 1.9 to 5.0%
of barcode 2 from Z. tritici, 2.1 to 5.7% of barcode 3 from Pyr-
enophora tritici-repentis, and 0.1 to 0.4% of barcode 4 from Puccinia
striiformis f. sp. tritici, and 0.6 to 1.2% from Z. tritici. Unexpectedly,
we also identified Parastagonospora nodorum in samples derived
from different treatment groups in all four biological replicates. To
ascertain whether Parastagonospora nodorum was truly present, we
extracted all 915 reads that were assigned to have originated from the
Parastagonospora nodorum genome in all four biological replicates.
We used these reads to perform an open-ended blastn search against
the entire NCBI nonredundant nucleotide (nt) database. We found
that 344 of 915 reads were assigned to genus Parastagonospora,
including 339 reads identifying Parastagonospora nodorum SN15
genome (Supplementary Fig. S2). A further 371 reads hit-related
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Fig. 1. The Nanopore sequencing workflow for fungal pathogen identification. (i) Sampling: plant pathologists collected wheat leaf samples from
disease nursery fields, with visual confirmation of disease symptoms for four infection types (three single fungal infections and one double

fungal infection). Fungicide-treated wheat leaves of the same variety and growth stage were collected as a control treatment. (i) DNA sequencing:
to minimize operator bias. DNA was extracted from all five samples without knowledge of the causative agent(s) affecting each sample. We
labeled samples with DNA barcodes through a PCR reaction step before sample pooling and 1D library preparations (SQK-LSK107); (iii) Data analysis:
we quality-controlled sequences based on Phred quality scores and trimmed adapter sequence using Porechop (Wick et al. 2018). We performed
BLAST (Altschul et al. 1990) searches using processed reads and identified the best hits. We summarized the total sequence length of hits to
each species using the python matplotlib module. Images used in step iii are from the official websites of each program.
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species, including 226 from the same Pleosporales order: Lep-
tosphaeria spp. (84 reads), Alternaria spp. (81), Pyrenophora spp.
(10), Bipolaris spp. (9), Shiraia spp. (9), and other genus. The
remaining 200 reads fell above the given e-value threshold (0.01) and
failed to be assigned. The difference between both BLAST searches
potentially stems from the relatively high error rate of the MinION
sequencer and the distinct conserved regions from genomes of closely
related species (Jain et al. 2018; Laver et al. 2015). We tested for the
presence of Parastagonospora nodorum in one of our four biological
replicates using an independent molecular biology approach. We
performed a PCR screen in replicate 3 using the PnTox3 gene that is
universally found in all Australian Parastagonospora nodorum
isolates but not in any other fungal species (Liu et al. 2009). We were
able to amplify a specific band corresponding to PnTox3 (Lin et al.

2018, Supplementary Fig. S3) in the Z. tritici treatment group
(barcode 2), which displayed the most Parastagonospora nodorum
assigned sequencing reads (Fig. 4). The Puccinia striiformis f. sp.
tritici treatment group (barcode 1) and the Puccinia striiformis f. sp.
tritici + Z. tritici treatment group (barcode 4) contained a lesser
number of Parastagonospora nodorum-assigned sequencing reads,
and these appeared to be below the detection threshold of PCR
analysis. These results support the finding that Parastagonospora
nodorum is present in our samples from the Wagga Wagga wheat-
growing region despite the disease not being commonly found in the
region nor the pathogen being purposefully inoculated in the trial.
Bacterial species associated with fungal disease development.
To obtain an overview of the microbiome profile in and on wheat
leaves infected by different fungal pathogens, we attempted to
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Fig. 2. Uneven proportions of barcode-labeled DNAs across all biological replicates. Columns indicate four biological replicates from five different
treatment types. The y-axis indicates relative abundance of total sequence lengths labeled with one of five DNA barcodes within each sample set. Each
barcode represents one wheat sample. Reads without a detectable barcode were labeled as “unclassified.”
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Fig. 3. Wheat is predominantly identified in the whole genome sequencing analysis using BLAST. The graph shows the relative sequence length
per species identified using a “winner-takes-all” approach when searching the custom genome reference database. Wheat (gray), fungal pathogen
genomes (blue), NCBI nucleotide (nt) database (red), and unmapped (light green) (results and methods sections provide details). The numbers at
the bottom of each bar show the total sequence length (bp) of processed reads for each replicate. Replicates 1, 3, and 4 showed similar
classification levels, while replicate 2 contained a higher number of unclassified sequences.
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identify other microbial species present on the leaves. We searched
the nonredundant NCBI nucleotide database with reads that were
not assigned to any of the five reference genomes present in our
initial custom genome reference database. We found that the
proportion of reads assigned to a genome in the restricted and the nt-
NCBI databases were high for flowcells 1, 3, and 4 (92.9, 94.3, and
93.8%, respectively), but only 84.6% for flowcell 2 likely due to
technical issues. Overall, from each flowcell, less than 1.4% of
passed reads identified microbiota other than the major pathogens in
the custom genome reference database. We pooled the reads from
each barcode in all biological replicates, and calculated the total
sequence length percentage that identified a specific genus in each
sample using NCBI taxonomic identifiers (Fig. 5A). Genus
Pseudomonas took up the highest proportion in all diseased
samples, ranging from 0.08% to more than 0.88%, but was nearly
absent in healthy wheat (barcode 5, 0.01%). Genus Alternaria is
also found in all samples with a proportion between 0.05 to 0.2% in
diseased samples and 0.005% in healthy wheat. Uniquely in
Puccinia striiformis f. sp. tritici treatment group (barcode 1),
bacterial Erwinia comprised 0.09% of total sequence length as
represented by 219 reads and the second highest proportion. In
contrast, Erwinia only represented 0.003% and 0.001% in Z. tritici
treatment group (barcode 2) and fungicide treatment group (barcode
5) while being absent in any other treatment group. In treatment
groups infected with Z. tritici (barcodes 2 and 4), hits on Z. tritici
were still present and may represent sequences in the six Z. tritici
genomes in the NCBI nucleotide database that are absent from the
Z. tritici genome we used to generate our initial custom database. At
the species level (Fig. 5B), total sequence length percentages
identifying Pseudomonas syringae were much more frequent in
treatment groups infected with Puccinia striiformis f. sp. tritici
(barcode 1, 0.59%) and/or Z. tritici (barcode 2, 0.33%). In contrast,
the treatment group infected with Pyrenophora tritici-repentis
(barcode 3) displayed a much lower relative total sequence length

of 0.02% assigned to Pseudomonas syringae. Relative sequence
length assigned to other Pseudomonas species such as Pseudo-
monas poae followed a similar trend. This finding is consisted with
previous reports were Pseudomonas spp. have been descripted to be
associated with fungal infections of wheat (Al-Sallami et al. 1997;
Mehrabi et al. 2016). At the upper taxonomic classifications,
Proteobacteria and Ascomycota were the most abundant bacterial
and fungal phyla across all treatment groups (Supplementary Fig.
S4) followed by Actinobacteria and Basidiomycota. At the class
level (Supplementary Fig. S5), either Gammaproteobacteria or
Dothideomycetes were the most abundant. Overall, the microbiome
structure of the upper taxonomy resembles that of the lower tax-
onomy (Supplementary Figs. S6 and S7) as most sequences were
assigned to genus Pseudomonas.

DISCUSSION

We have developed a WGS workflow which accurately identified
three fungal pathogens responsible for three major wheat diseases
(stripe rust, Septoria tritici blotch, and yellow spot) from field
samples. We designed a two-step BLAST process to identify ma-
jor agents in diseased samples and characterize the associated
microbiota. We identified a number of Pseudomonas species
present in stripe rust and Septoria tritici blotch-infected wheat
leaves, which appear far less abundant in yellow spot or non-
diseased leaves.

WGS provides a wealth of information that could be used to
accurately identify disease-causing agents and begin to describe
microbial community composition in a sample (Brown et al. 2017;
Thomas et al. 2012). Without PCR amplification process to po-
tentially introduce bias, WGS data are obtained directly from
sample extracts and illustrates features closest to reality dependent
only on sampling and DNA extraction strategies. Omitting PCR
steps, WGS requires less processing time and proves advantageous
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for on-site diagnostic purposes where technical simplicity and fast
processing time are prioritized. It has a significant drawback,
however, in that most sequences are derived from the host (wheat)
genome, representing 90.1% of total sequence length in flowcell 1,
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sequences are unwanted and can overwhelm community DNA
(Sharpton 2014). To enrich microbial sequences, one strategy is to
apply intricate molecular methods during DNA extraction such as
gradient centrifugation and sonication (Bulgarelli et al. 2012; Lim
et al. 2014). As these techniques require sophisticated instruments,
this can be a challenge to apply to environmental samples, espe-
cially in field conditions. Another strategy to enrich microbiome
sequences involves sequencing of microbial metabarcode markers.
With the improvement of sequencing length, species-level reso-
lution using long read amplicon sequencing has been achieved
in few cases (Benitez-Pdez and Sanz 2017; Martijn et al. 2017).
Long-read amplicon sequencing seems to be a promising method
for species identification of known microbes, as it requires less input
DNA than WGS and metabarcode databases contain information
from comparatively more species than whole genome databases
(Cruaud et al. 2017; Ranjan et al. 2016; Tessler et al. 2017).
Amplicon sequencing is also possible in applied cases given the rapid
development of remote PCR such as the miniPCR system (Amplyus,
Cambridge, U.S.A.) and the Bento Lab platform (Bento Bioworks
Ltd., London, United Kingdom). Drawbacks of amplicon strategy
include biases related to PCR amplification, which lead to inaccuracy
when calculating relative proportions of microbial species.

While many workflows are available for microbiome profiling
using metagenomics data, there is no standard method for analyzing
long read data. This makes validation of both methods and results
crucial (Quince et al. 2017), and mock microbial communities or
samples containing known microbial species have been used to
validate methods as a proof-of-concept (Nicholls et al. 2018).
Verifying the diagnosis of a specific pathogen strain based on SNPs
called from MinlON reads, Votintseva et al. (2017) first identified
pathogens using clinical methods and then generated sequencing data
to map this data to the targeted species in real-time. Sequencing
reactions were stopped once sufficient SNPs were obtained to
confidentially identify the targeted pathogen strain. Similarly, our
study used wheat samples inoculated manually by known pathogens
and confirmed visually prior to sequencing. The major pathogen
identifications from the first BLAST analysis against the custom
genome reference database validated the capacity of our workflow for
identification of those pathogen species. To validate the usage of a
narrow first initial database consisting of suspected pathogens and
host, we also performed an open-ended BLAST analysis against the
whole nucleotide database with all sequencing reads of replicate 4
(Supplementary Table S2). The overall results of this unrestricted
database search are consistent with our targeted analysis approach,
both in terms of pathogen identification and microbiome analysis
(Figs. 4 and 5). Yet, we observed that some reads were assigned to
closely related plant genera such as Aegilops or Hordeum instead of
wheat (Triticum). This is likely caused by the presence of highly
similar DNA sequences in these related species and the relatively
high error rate of nanopore sequencing. To further explore and
validate these results different analysis approaches should be per-
formed carefully on the same dataset and compared in detail. Brown
et al. (2017) compared the performance of four bioinformatics
pipelines on identifying species within different synthetic bacterial
communities using MinlION. Compared with the composition of a
mock community, even the pipeline that resulted in the most similar
classification still contains reads classified to species known not to
be present. These false positive results are due largely to sequenc-
ing errors, which illustrates the need for more stringent filtering of
the raw data and improvement of per read accuracy.

Nanopore metagenomics has great potential for quick diagnosis
of suddenly emerging crop disease and large-scale disease moni-
toring at centralized agricultural institutions. As shown from other
sequencing studies performed in a more extreme environment

(Boykin et al. 2018; Johnson et al. 2017), all processes including
DNA extraction and purification, library preparation and se-
quencing can be completed within a few hours. A tailored database
can be created for each crop species containing the genomes of
pathogens known to cause diseases to minimize processing time.
For rapidly evolving pathogens such as wheat rusts, the SNP-based
classification method described by Votintseva et al. (2017) could be
adapted to define rust strains once enough SNPs are obtained.
However, before running the sequencer, sampling procedures and
tissue processing strategies still need to be carefully curated. In our
study, we randomly sampled multiple leaves from different plants
belonging to five treatment groups and performed complete se-
quencing and analysis independently on all four biological replicate
sample sets. Consistency in barcode classification and BLAST
analysis across all replicates suggested reliability of the workflow.
In centralized agricultural institutions, amplicon sequencing can
potentially play a key role and, to-date, there have been a few
preliminary successes (Benitez-Pdez and Sanz 2017; Benitez-Péez
et al. 2016; Pomerantz et al. 2018). Given the multiplexing capacity
of the 96 native barcoding kit (ONT), many samples can be se-
quenced in parallel when larger scale sequencing platforms are
employed (e.g., GridlON, ONT). To achieve this goal, long read
databases, sequencing accuracy and access to large-scale sample
processing power need to be improved.

In conclusion, our workflow demonstrates the potential of this
technology for plant pathogen diagnosis, field applications, and
microbiome characterization. A combination of on-site and cen-
tralized sequencing approaches would, in future, revolutionize
management of agricultural biosecurity and reduce crop loss.
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