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Abstract
Motivation: Currently there are no tools specifically designed for annotating genes in phages. Several tools are available that have 
been adapted to run on phage genomes, but due to their underlying design, they are unable to capture the full complexity of 
phage genomes. Phages have adapted their genomes to be extremely compact, having adjacent genes that overlap, and genes 
completely inside of other longer genes. This non-delineated genome structure makes it difficult for gene prediction using the 
currently available gene annotators. Here we present PHANOTATE, a novel method for gene calling specifically designed for 
phage genomes. While the compact nature of genes in phages is a problem for current gene annotators, we exploit this property 
by treating a phage genome as a network of paths: where open reading frames are favorable, and overlaps and gaps are less 
favorable, but still possible. We represent this network of connections as a weighted graph, and use dynamic programming to find 
the optimal path.
Results: We compare PHANOTATE to other gene callers by annotating a set of 2,133 complete phage genomes from GenBank, 
using PHANOTATE and the three most popular gene callers. We found that the four programs agree on 82% of the total predicted 
genes, with PHANOTATE predicting more genes than the other three. We searched for these extra genes in both GenBank’s non-
redundant protein database and all of the metagenomes in the sequence read archive, and found that they are present at levels 
that suggest that these are functional protein-coding genes.
Availability: https://github.com/deprekate/PHANOTATE
Contact: Katelyn McNair: deprekate@gmail.com; Robert Edwards: redwards@sdsu.edu 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 

Phages, viruses that infect bacteria, provide 
unique challenges for bioinformatics. There is a 
limit to how much DNA can be packaged in a 
capsid, and therefore phage genomes are 
generally short, typically in the range 20-100 kb. 

By necessity, their genomes are compact: phage 
genes are shorter than their bacterial homologs, 
are frequently co-transcribed, and adjacent open 
reading frames often overlap (Kang et al., 2017). 
In a few cases, phage genes are encoded within 
each other (Cahill et al., 2017; Summer et al., 
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2007).  In contrast, bacterial genes generally are 
longer, separated by intergenic spacers, and 
frequently switch strands (Kang et al., 2017). 
There are no bioinformatics tools specifically 
designed to identify genes in phage genomes, so 
algorithms designed to identify bacterial genes are 
typically used (McNair et al., 2018). For example, 
from thirty-one phage genomes published between 
10/14/2016 and 8/1/2018, the genes in ten phage 
genomes were identified by GeneMark software 
(GeneMark/GeneMarkS/GeneMark.hmm), the 
genes in ten phage genomes were identified by 
RAST, the genes in seven phage genomes by 
Glimmer, three phage genomes each by 
Geneious, the NCBI ORF Finder, PHAST (which 
uses Glimmer as a gene caller (Arndt et al., 
2016)), PROKKA (which uses Prodigal as a default 
gene caller (Seemann, 2014)), two phage 
genomes by Prodigal and one phage genome by 
MetaVir, RASTtk, SerialCloner, or SnapGene 
(Supplemental Table 1; note that in many 
publications several different tools were used to 
identify genes in phage genomes). Each of these 
algorithms relies on information that is not 
available and calculations that are not possible 
with short genomes. For example, there are no 
conserved genes in phage genomes that can be 
used to build universal training sets (Rohwer and 
Edwards, 2002), fewer genes means the statistics 
used to identify start codons are less accurate (Wu 
et al., 2003), and because many phage genes or 
the proteins they encode have no homolog in the 
databases, similarity searches are unreliable 
(Roux et al., 2015). There are alternate gene 
calling approaches, such as using positional 
nucleotide frequency (Besemer and Borodovsky, 
1999), or the multivariate entropy of amino acid 
usage used by Glimmer (Ouyang et al., 2004), but 

these are designed for complete bacterial 
genomes and have not been optimized for use 
with phage genomes.

Here, we introduce a novel method for gene 
identification that is specifically designed for phage 
genomes. We make several presumptions based 
on studying hundreds of phages genomes. First, 
we noted that since phages have physical limits on 
their genome sizes they contain minimal non-
coding DNA. Second, we showed that phage 
genes are usually on the same strand of the DNA, 
presumably because they are co-transcribed 
(Akhter 2012; Kang et al., 2017). Based on these 
observations, we designed a completely novel 
approach to phage gene identification, tiling 
opening reading frames to minimize non-coding 
DNA bases and strand switching. We treat a 
phage genome as a network of paths in which 
open reading frames are more favorable, and 
overlaps and gaps are less favorable.  We solved 
this weighted graph problem using the Bellman-
Ford algorithm (Bellman, 1958; Ford, 1956), and 
by optimizing the parameters for phages genomes 
we are able to enhance phage gene prediction 
algorithms. In the absence of supporting data to 
confirm our new predictions, we turned to high-
volume sequence similarity searches to explore 
the predicted proteins. Regions of the genome that 
encode proteins are more likely to be conserved at 
the amino-acid level than regions that encode 
regulatory regions, replication regions, sites of 
integration, and other, DNA-based, information 
components of the phage genome (Badger and 
Olsen, 1999). These searches showed that the 
predicted phage genes might encode novel 
proteins that have been missed by existing gene 
callers designed to annotate bacterial genomes.
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2 Methods

The PHANOTATE algorithm. The first step 
PHANOTATE takes in identifying the genes in a 
phage genome is creating a weighted graph from 
the open reading frames in that genome.  By 
default, we allow for three start codons (codonsstart 
= {ATG, GTG, TTG}), and three stop codons 
(codonsstop={TAA, TAG, TGA}), and the default 
minimum length of an ORF is 90 nucleotides. The 
directed weighted graph consists of nodes that 
represent start and stop codons, and edges that 
represent either an ORF if the edge connects a 
start codon to a subsequent stop codon in the 
same reading frame; a gap if the edge connects a 
stop codon to a subsequent start codon in any 
reading frame on the same strand, or if the edge 
connects a stop codon to a subsequent stop codon 
on the alternate strand; or an overlap if the edge 
connects a stop codon to a preceding start codon 
in any other reading frame on the same strand, or 
to a preceding stop codon on the alternate strand. 
Since phages rarely have more than 300 bp of 
untranslated DNA, and to reduce computational 
burden, we only connect ORFs within ± 300 bp of 
each other.  When there is a very large span 
without an ORF, we connect ORFs on each side of 
the region with a linear penalty. 

For each edge, we calculate a weight depending 
on the feature type: ORF, overlap, or gap. To 
calculate the weight of an ORF (worf), we use an 
adjusted likelihood of not finding a stop codon in 
an ORF of this length.  We count the fraction of 
each base in each ORF, and use that to determine 
the overall probability encountering a stop codon 
over the entire ORF:

      (1)𝑃(𝑠𝑡𝑜𝑝) = 𝑃(𝑇𝐴𝐴) +  𝑃(𝑇𝐴𝐺) +  𝑃(𝑇𝐺𝐴)

We then calculate P(not stop) to obtain the 
probability of NOT encountering a stop codon:

(2)𝑃(𝑛𝑜𝑡 𝑠𝑡𝑜𝑝) =  1 ― 𝑃(𝑠𝑡𝑜𝑝)

Using P(not stop) alone to calculate the path 
through the genome is sufficient for genomes with 
an average GC content, however high GC content 
genomes have extremely long, spurious, open 
reading frames caused by their bias of generally 
having a G or C in the third codon position of their 
protein-encoding genes, which then forces a C or 
G in the first position in the opposite strand, 
limiting the options for including stop codons in the 
genome. To overcome this we incorporated two 
GC frame plot scores into our final calculation. The 
initial GC frame plot score was inspired by 
Prodigal, but we have adapted that and we also 
include both minimum GC frame plot and 
maximum GC frame plot. We start by reading the 
three frames of the genome one base at a time, 
looking at the codon starting at that base, and 
calculating the %GC content over a 120 bp 
window for each of the three reading frames.  
Taking the set of ORFs that start with ATG, we 
iterate through the codons of those ORFs and 
determine which position (1st, 2nd, or 3rd) has the 
maximum GC content, and maintain a running total 
for that position. Similarly, we calculate a GC 
frame plot minimum score by recording the 
minimum GC content (pseudocode is provided in 
Supplemental File 1).   This gives us a count of the 
frequency of the three positions in all ORFs that 
start with ATG and can be used to estimate the 
preferred reading frame at any location.  We 
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translate these three numbers into scores by 
dividing each by the counts for the position with 
the highest count, bringing the preferred maximum 
GC position to 1, and the others to less than 1. 
This yields a set of three position scores that range 
between 0 and 1, with 1 being the maximal or 
minimal GC frame. For instance, if the input 
genome had a bias where half of its max GC frame 
was in the third frame, and the other half split 
evenly between the first and second frame, once 
normalized, the GCFPmax scores would be [0.25, 
0.25, 1]. The GC frame plot scores are used to 
exponentiate the P(not stop) score. For example, if 
a codon’s GCFPmax score was 1, which would 
match the preferred frame, then P(not stop) is 
unchanged.  However, if a codon’s GCFPmax 
score is less than 1, indicating that the current 
ORF is in a different frame to the preferred GC 
frame at that location in the genome, then that 
codon’s P(not stop) value is reduced in the final 
calculation.

Scores for ORFs are modified by a weighted 
ribosomal binding site (RBS) score. Since little is 
currently known about the diversity of ribosomal 
binding sites in phages, we employed a similar 
likelihood-based Shine-Dalgarno RBS system 
used previously (Hyatt et al., 2010). We plan to 
add a more rigorous non Shine-Dalgarno RBS 
motif finder in subsequent versions of 
PHANOTATE. In addition, we adjust the ORF 
score based on the likelihood that the first codon is 
a start. We created a normalized frequency of start 
codons based on all genes predicted in GenBank 
in 2,133 phage genomes. Finally, the weight is 
negated to denote these edges as favorable in the 
network.

The calculation to generate a weighted score worf 
for each ORF in the graph is shown in equation 3.
When continuing from a stop codon either in a gap 
or an overlap, the next ORF maybe on either 
strand of the DNA sequence. However, phage 
genes are usually on the same strand, and unlike 
bacterial genes, they rarely switch strands (Kang 
et al., 2017). If a strand switch occurs, then a 
strand switch penalty is included in the weight of 
the gap or overlap, where P(switch) is equal to 
0.05,  otherwise no penalty is added: P(switch) = 
{0, 0.05}.  This penalty is the multiplicative inverse 
of the probability of a strand switch occurring, 
which was calculated from our set of annotated 
genes derived from the 2,133 phage genomes to 
occur at a rate of approximately 5% per protein-
encoding gene (in contrast, the rate per bacterial 
protein-encoding gene is approximately 25%). 

Since gap weights (wgap) need to be proportionally 
scaled to ORF weights,  we use a similar weight as 
ORFs (worf).  They are not corrected for GC frame 
plot, and use a genome-wide average probability 
of not finding a stop codon  that is 𝑃(𝑛𝑜𝑡 𝑠𝑡𝑜𝑝)

exponentiated by the length of the gap, and then 
the positive multiplicative inverse is taken and 
combined with P(switch) (Equation 4) .  

𝑤𝑔𝑎𝑝 =
1

(𝑃(𝑛𝑜𝑡 𝑠𝑡𝑜𝑝)𝑙𝑒𝑛) +
1

𝑃(𝑠𝑤𝑖𝑡𝑐ℎ)                              (4)

Overlap weights (woverlap) also need to be 
proportionally scaled to ORF weights, so they are 
calculated by finding the average of the two coding 
weights of the ORFs in the overlap, and then 
exponentiating by the length, n, of the overlap 
(Equation 5). If a strand switch occurs, then a 
penalty is added to the gap weight as noted above.
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𝑤𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
1

(
𝑝(𝑛𝑜𝑡 𝑠𝑡𝑜𝑝)1 + 𝑃(𝑛𝑜𝑡 𝑠𝑡𝑜𝑝)2

2 )𝑙𝑒𝑛
+

1
𝑃(𝑠𝑤𝑖𝑡𝑐ℎ)     (5)

In order to use these weights in with the Bellman-
Ford algorithm, they must be transformed into 
‘distances’, so for each of the above weights, we 
take the multiplicative inverse of the probabilities to 
create a weighted graph network.  Our novel C-
based implementation of the Bellman-Ford 
algorithm is then used to find the shortest path 
through the network.  

Comparison with other gene callers. We compared 
gene identification between PHANOTATE and the 
three most popular gene callers used to identify 

genes in phages (Supplemental Table 1): 
GeneMarkS, Glimmer, and Prodigal using a set of 
2,133 complete phage genomes, which were 
downloaded from the GenBank FTP server 
(Benson et al., 2017). We did not include 9 
Mycoplasma and Spiroplasma phages, which use 
an alternative genetic code.  We ran PHANOTATE 
and each of the three alternative gene callers with 
default (or “phage” if available) parameters on 
each phage genome, as is done for most phage 
genome annotation projects (Supplemental Table 
1). In addition, the “meta” option was used to allow 
Prodigal to run on genomes smaller than 20kb.

To mask out functional, but non-protein coding 
regions of the genomes, we used the program 
tRNAscan-SE to find the tRNA genes in each 
genome.  To compare the algorithms, we counted 
the number of open reading frames predicted by 
each respective algorithm and compared those 

predictions to the corresponding genes in 
GenBank. 

Statistical Analyses. All analyses were performed 
in Python using the statsmodels and scipy 
modules (scipy.org) (Jones et al., 2001; Seabold 
and Perktold, 2010). ANOVA, Tukey's honest 
significant difference (HSD) test, Levene’s test, 
Cohen’s f2 test,  and t-tests were performed on 
ln(x+1)-normalized length or count data.

Validation against the sequence read archive. In 
the absence of direct protein measurements, we 
used conserved similarity to test whether ORFs 

are likely to encode proteins. To create a positive 
control set, we combined the 223,385 ORFs that 
were predicted to encode proteins by one or more 
of Glimmer, GeneMarkS, or Prodigal. To create a 
negative control set, we identified the 1,122,336 
open reading frames over 90 nt that were not 
predicted to encode proteins by any software 
(Glimmer, GeneMarkS, Prodigal, or 
PHANOTATE). Finally, we also identified the 
15,105 ORFs that were unique to PHANOTATE 
(Figure 1). We previously developed partie (Torres 
et al., 2017) to identify the random community 
genomes (metagenomes) in the NCBI Sequence 
Read Archive (NCBI Resource Coordinators, 
2016). We used lastal (Kiełbasa et al., 2011; 
Sheetlin et al., 2014) to compare 6-frame 
translations of a 100,000 read sample of the 
sequence reads from these metagenomes in the 
SRA to the predicted protein sequences from the 
open reading frames. Sequences with an expect 
value less than 1x10-10 were considered 

      (3)𝑤𝑜𝑟𝑓 =   ―
1

∏𝑐𝑜𝑑𝑜𝑛𝑠
𝑐 = 1 (𝑃(𝑛𝑜𝑡 𝑠𝑡𝑜𝑝)

𝐺𝐶𝐹𝑃𝑚𝑎𝑥𝑚𝑎𝑥𝐺𝐶𝑓𝑟𝑎𝑚𝑒(𝑐)𝐺𝐶𝐹𝑃𝑚𝑖𝑛𝑚𝑖𝑛𝐺𝐶𝑓𝑟𝑎𝑚𝑒(𝑐))
∗ 𝑅𝐵𝑆 ∗  𝑆𝑇𝐴𝑅𝑇
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significant. The differences in means were 
compared using a one-way ANOVA followed by a 
post-hoc Tukey’s test to identify the variables 
driving any difference. Normality was tested using 
Levene’s test (Fowler et al., 1998). Cohen’s f2 test 
was used to determine effect size.

These data sets are uneven and large and 
therefore direct comparisons may lead to small 
effects being found to be significant. To overcome 
this we measure both Cohen’s f2 and d values to 
measure effect size (Cohen, 1988; Nakagawa and 
Cuthill, 2007). In addition, we subsample 1,000 
proteins with replacement at random from the 
entire pool of ORFs and use those in the ANOVA. 
We repeat this calculation 1,000 times to 
determine whether the PHANOTATE predictions 
are similar to either the set of positive predicted 
proteins or the negative control set of ORFs that 
were not predicted to encode proteins.

The Git repository contains a detailed description 
of the approach used to compare the SRA reads to 
the predicted open reading frames, contains a link 
to the alignment data, and contains Jupyter 
notebooks with the statistical analysis reported 
below.
https://github.com/deprekate/PHANOTATE

3 Results

PHANOTATE is a novel gene caller designed 
explicitly to identify phage genes. We used the 
Bellman-Ford algorithm to treat the genome like a 
path, and parameterized the search by calculating 
the weights from 2,133 phage genomes in 
GenBank. To test PHANOTATE, we calculated the 
number of genes predicted by our algorithm and 
compared that to the genes predicted by those 

algorithms typically used to call genes in phages 
(Supplemental Table 1), namely Glimmer (Ouyang 
et al., 2004), GeneMarkS (Besemer and 
Borodovsky, 1999), and Prodigal (Hyatt et al., 
2010). In total, we identified 239,072 genes from 
2,133 phage genomes (Table 1). 

There was no statistically significant difference in 
the mean lengths of the genes predicted Glimmer 
or Prodigal, while the mean lengths of the genes 
predicted by PHANOTATE and GeneMarkS were 
statistically significantly different to those called by 

the other algorithms (F(3,861779) = 440.45, p = 
0.0). However, the effect size of the difference 
was very small (d < 0.1 in every pairwise 
comparison).

Table 1. Numbers and lengths of the genes 
predicted by the different gene callers.

Gene Caller Number 
of genes

Mean 
length 

(nt)

Stdev of 
gene 

length (nt)

PHANOTATE 225,518 603 708

GeneMarkS 213,101 628 719

Glimmer 211,278 631 719

Prodigal 211,886 631 720

The Jaccard Index (J) calculated from these 
results show that Prodigal and GeneMarkS are the 
most similar in their predictions (J(Prodigal, 
GeneMarkS)=0.94); Glimmer is similar to both 
Prodigal and GeneMarkS (J(Glimmer, Prodigal) = 
J(Glimmer, GeneMarkS) = 0.92); while 
PHANOTATE is the most different because of the 
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Figure 1. Number of genes predicted by each of four 
different gene prediction algorithms and the combinations 
thereof. Red background: predicted by a single algorithm; 
purple background: predicted by two algorithms; blue 
background: predicted by three algorithms; green 
background: predicted by all four algorithms.

large number of ORFs that it predicts as proteins 
that the others do not (see below; J(PHANOTATE, 
Prodigal) = 0.88; J(PHANOTATE, Glimmer) = 
J(PHANOTATE, GeneMarkS) = 087). 

Each of the tools identified a set of predicted 
genes that were not identified by any of the other 
software. PHANOTATE version 1.0 predicted 
15,105 genes (6% of the total number of genes 
predicted by all software) that were not predicted 
by other gene prediction algorithms. An ANOVA 
comparison between the lengths of the genes 
identified by 1, 2, 3, or 4 gene callers identified 
significant variation (F(1, 861781) = 21312.85, p = 
0.0), but the effect size was very small (d = 0.02). 
A post hoc Tukey test showed that there was no 
difference between the lengths of genes identified 
by a single gene caller or two gene callers (p > 
0.05), but that all other pairwise comparisons were 
different. When we consider just the unique genes 

that were identified by each algorithm the ANOVA 
comparison identified significant variation in the 
lengths of the genes (F(3,20856) = 56.6, p = 0), 
but again the effect size was very small (d = 0.01). 
The post hoc Tukey’s test showed that there were 
two groups that were significantly different 
between groups but not within groups (p < 0.05). 
Glimmer (M = 217 nt, SD = 174.35) and Prodigal 
(M = 226 nt, SD = 151.58) had indistinguishable 
mean lengths of unique genes, while the mean 
lengths of PHANOTATE (M = 210 nt, SD = 245.94) 
and GeneMarkS (M = 183 nt, SD = 109.06) were 
indistinguishable. 

We cannot simply rely on the GenBank 
annotations to be correct. First, the proteins 
annotated in GenBank are typically predicted by 
the gene callers used in this comparison 
(Supplemental Table 1). Second, many of the 
current phage genome annotations in GenBank 
are filled with false positives.  For example, in the 
Shiga toxin-converting phages (NC_004913 and 
NC_004914), every ORF longer than 160 bp has 
been annotated as a protein-coding gene. There 
are also abundant examples of false negatives, 
protein-coding genes present in the genome that 
were not identified by the annotation software. The 
most obvious false negatives are genes shorter 
than 100 bp, since this is an often-used arbitrary 
minimum cutoff. Small genes that do not show 
strong coding signals, such as shared homology to 
known or hypothetical genes in the databases or 
shared codon usage, are often excluded by other 
gene annotators in an effort to minimize false 
positives.
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The best experimental approach to determine 
whether these genes encode proteins would be to 
identify the proteins via proteomics. However, 
there are few published phage proteomics studies 
(Pope et al., 2014; Fagerquist et al., 2014), and in 
those studies, the raw proteomics data is not 
provided. Rather the authors only indicate which 
ORFs were matched, frequently using proprietary 
software, and typically using gene calls made 
using the algorithms discussed here. This 
precludes our ability to use proteomics data to 
validate gene identification in phages. 

In the absence of third-party validation data sets 
and experimental data sets, we turned to evolution 
to test whether the genes we predict in these 
phages may encode proteins. We hypothesized 
that protein-encoding genes are more likely to be 
evolutionarily conserved than ORFs that are not 
translated into proteins. Protein-encoding genes 
are constrained by the function of the protein. A 
variant of this approach has previously been used 
to identify genes in bacterial genomes (Badger and 
Olsen, 1999). When we compared the genes that 
PHANOTATE predicted to the proteins in the 
GenBank non-redundant (nr) protein database 
(Benson et al., 2017), there was significant 
similarity to 23% of the predicted proteins (expect 
value < 10-10). This is similar to the 1-30% of 
phage proteins that typically have similarity to the 
GenBank nr database, and the remained is often 
called the “phage dark matter” (Mokili et al., 2012). 
The mean lengths of the predicted genes that did 
not match to GenBank (243 nt) was significantly 
shorter than the mean length of those genes that 

matched GenBank (229 nt) (t(1000) = 3.02, 
p<0.005) but the effect size was small (d = 
0.19). This may suggest that shorter proteins 

are under-represented in the database because 
of arbitrary lower limits on gene callers, shorter 
proteins have less statistical significance in 
similarity searches, or PHANOTATE is 
identifying more, shorter, ORFs and incorrectly 
suggesting they are proteins. We, therefore, 
sought an additional assurance of the genes 
predicted by PHANOTATE.

Figure 2. Violin plot of the ln(number or reads that map) 
to each of the ORFs predicted either by one (or more) of 
Prodigal, Glimmer, or GeneMarkS; by no gene prediction 
algorithms (negative control), or by PHANOTATE alone. 

For a more rigorous analysis of the ability of 
sequence similarity to discriminate between coding 
and non-coding genes, we turned to the largest 
repository of sequence data, the NCBI Sequence 
Read Archive (SRA) (NCBI Resource 
Coordinators, 2016). Specifically, we extracted 
94,652 random community metagenomes we 
previously identified (Torres et al., 2017). We 
constructed two control data sets: a set of 
presumed positive predictions comprised of all 
ORFs predicted by Glimmer, GeneMarkS, and/or 
Prodigal (but not those only predicted by 
PHANOTATE), and a set of  known negative 
annotations of ORFs that are longer than 90 bp 
and not predicted to encode proteins by any of the 
software used here, including PHANOTATE. We 
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mapped the reads from the sequence read archive 
to the ORFs using the translated search algorithm 
lastal (Kiełbasa et al., 2011; Sheetlin et al., 2014). 
When we compared the number of reads that 
mapped for all ORFs that had at least one read 
map, significantly more reads mapped to the ORFs 
predicted to be proteins (mean 1,871.5 reads 
mapped; standard deviation 15,933.2), than our 
negative control set (mean 136.0 reads mapped; 
standard deviation 1,316.9) (Figure 2) 

(F(2,149770) = 37,900, p = 0.00). There was a 
large effect size for this comparison (d = 0.9), as 
can be seen in Figure 2. This analysis confirms 

that we are more likely to find reads mapping to 
ORFs if they encode proteins than if they do not 
encode proteins, and therefore we can use this 
approach to determine whether the ORFs 
predicted by PHANOTATE alone are likely to 
encode proteins. 

When we compare the ORFs that are only 
predicted by PHANOTATE and not predicted by 
the other ORF callers (~6% of all the ORFs 
identified) with the two control sets, 72% of the 
time the ORFs predicted by PHANOTATE had 
mean read abundance that was indistinguishable 
from the mean abundance of the true proteins, but 
79% of the time the mean read abundance was 
similar to the ORFs that were not predicted to be 
proteins. Similarly, the medium effect size 
suggests that similarities to ORFs identified by 
PHANOTATE lie between those predicted by any 
gene caller (d = 0.42) and those not predicted by 
any caller (d = 0.47) as can be seen in Figure 2. 
The PHANOTATE predictions, therefore, lie 
between the “true positives” from the other 
software and the “true negatives” of all other 

ORFs, suggesting, but not confirming that they 
may encode real proteins.

One of the unique features of PHANOTATE is that 
it is essentially reference free. Other programs, 
such as Prodigal, GeneMark, and Glimmer, use 
hidden Markov models that require either a priori 
knowledge of the composition of protein-encoding 
genes or the identification of sufficient protein-
encoding genes in the genome to build a training 
set.  This is problematic when annotating phage 
genomes since most potential ORFs do not have 
homology to any known gene and the small phage 
genomes do not provide enough candidates to 
create a robust training set.  In addition, many 
phage genes are horizontally transferred, and thus 
have different properties and signals from each 
other.  Future versions of PHANOTATE will 
include the option to use these various gene 
properties, including hexamer frequency, codon 
bias, and non-Shine-Dalgarno ribosomal binding 
site detection, and will also provide a mechanism 
to mask functional noncoding bases, such as 
those in RNAs, repeats, and att sites to further 
increase the accuracy of the gene calls.  
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