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The atmosphere is vastly underexplored as a habitable ecosystem
for microbial organisms. In this study, we investigated 795 time-
resolved metagenomes from tropical air, generating 2.27 terabases
of data. Despite only 9 to 17% of the generated sequence data
currently being assignable to taxa, the air harbored a microbial di-
versity that rivals the complexity of other planetary ecosystems.
The airborne microbial organisms followed a clear diel cycle, possi-
bly driven by environmental factors. Interday taxonomic diversity
exceeded day-to-day and month-to-month variation. Environmental
time series revealed the existence of a large core of microbial taxa
that remained invariable over 13 mo, thereby underlining the long-
term robustness of the airborne community structure. Unlike terres-
trial or aquatic environments, where prokaryotes are prevalent, the
tropical airborne biomass was dominated by DNA from eukaryotic
phyla. Specific fungal and bacterial species were strongly correlated
with temperature, humidity, and CO2 concentration, making them
suitable biomarkers for studying the bioaerosol dynamics of
the atmosphere.
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Of the 3 planetary ecosystems, the lithosphere, hydrosphere,
and atmosphere, only soil and aquatic environments have

been extensively investigated for their microbial content (1). In
contrast, the study of the atmosphere as a microorganism-harboring
ecosystem has been technologically challenging, rendering it an un-
derstudied biosphere (2, 3). The atmosphere is assumed to contain
microorganisms from local and remote sources, being dispersed for
as long as they remain suspended in air (4–6). Previously reported
numbers of cells found in a defined volume of air are based either
on cultivation (colony-forming units; CFUs) or are estimated by
amplified ribosomal molecular markers (2, 7). Furthermore, research
into airborne microbial organisms is predominantly carried out
in countries located within temperate climate zones or as global
surveys with varying geographic and climatic parameters (8–10).
Here, we investigate the microbial composition of the outdoor

air microbiome at a single site in the tropics (Singapore, N1.334731;
E103.680996, sea-surface level) through a metagenomics time
course study of unprecedented temporal and taxonomic resolu-
tion. Singapore is located in the intertropical convergence zone
and experiences a biannual reversal of wind directions, which de-
fines the 2 monsoon seasons (11, 12). The biannually alternating
wind directions of the study site could result in vastly disparate
sources of transported microorganisms. Hindcast estimations over
48 h using the HYSPLIT Trajectory Model package (13) indicate
that during the northeast monsoon season, the prevailing airflow
is transporting air masses from the general area of Taiwan and
the Philippines. Wind trajectories during the southwest monsoon
season identify the Timor and Arafura seas as possible sites of
origin. Little variation in length of daylight across the seasons as

well as absence of large day-to-day fluctuations in temperature and
relative humidity are factors making the tropical region an ideal air
microbiome research site. Using deep metagenomics sequencing
and analysis, we describe the air microbiome variation within time
intervals of hours, days, and up to months. The resulting dataset of
795 air samples provided a high level of reproducibility and en-
abled extensive statistical analysis. Models developed using
Bayesian network analysis implicated specific environmental pa-
rameters as drivers for ecosystem diversity and composition. En-
vironmental studies have reported a microbial cellular density of
∼1012 per L of soil and ∼109 per L of water (14–17). In contrast,
air, being a much less dense medium, is reported to harbor ∼102
cells per L sampled, based on CFU counts and amplification of
rRNA markers (5). The 7 to 10 log difference in cell density per
volume represents a significant technological challenge for ana-
lyzing the biological content of air, as it mandates very large vol-
umes to be collected over extended periods of time (2). We have
devised an air-sampling approach that allows for 2-h or shorter
intervals to be sampled, generating highly reproducible results for
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downstream metagenomics analyses. In this regard, we can show
that collected biomass contains sufficient quantity and complexity
of DNA to enable ultradeep sequencing, generating more than
300 million reads from a single air sample. More importantly, the
robustness and precision of our sampling technique, as illustrated
by its replicability, allowed for the undertaking of experimen-
tal time-series surveys across days, weeks, and months (i.e., day
variation experiment [DVE] 1 to 5). Air samples were collected
12 times per d, every 2 h, for 5 consecutive days, in 3-mo intervals
(DVE2 to 5). This 13-mo schedule of sampling events covered
Singapore’s wet and dry seasons, including 2 monsoon seasons with
wind directions from the northeast and southwest. Each time series
(DVE2 to 5) resulted in 180 sequencing libraries. Thus, all 5 DVEs
combined represent 795 air samples from 265 time points, which
resulted in 9.11 billion reads of 250 bp, or 2.27 terabase pairs, the
equivalent of ∼760 human genomes (SI Appendix, Table S1).

Results
Taxonomic Diversity of a Single Tropical Air Sample. We first assessed
the taxonomic diversity of a random air sample (DVE1011) in
DVE1 relative to seawater, soil, and human gut microbiome sam-
ples from the same geographic region (Singapore, each normalized
to 2 million reads per sample). The air sample contained the lowest
percentage of identifiable microbial taxa (9 to 17%, night/day),
while the human microbiome, being the most intensively studied
(18), showed up to 64% identifiable taxa in our analysis at the

superkingdom level (Fig. 1A) (19). The unidentifiable fraction of
the air microbiome contained reads that were either not specific to
a known taxon (35%, unassigned) or did not show any similarity to
the nonredundant sequence database (48%, no hits). The “no hits”
category likely consists of 1 of the following possibilities: 1) inter-
genic regions of eukaryotic organisms; 2) extracellular DNA that
has been highly mutagenized by the exposure to harsh environ-
mental conditions; or 3) as-yet undiscovered microorganisms that
currently have no representation in sequence databases. Hence,
compared with soil and seawater, air is currently the most under-
explored ecosystem on a planetary scale.
Despite the low percentage of assigned reads, the air samples

displayed species richness comparable to the other 3 ecosystems
(Fig. 1B). Unlike these environments, which were dominated by
bacterial phyla, the tropical air samples showed that a large
proportion of the assigned reads belong to fungi (82%), while
only 14.5% were assigned to bacteria, 2.6% to plant species, and
0.087% to archaea (Fig. 1C). As our sequencing data and meta-
genomics analysis allowed for species-level identification, we
used known genome sizes of the top 40 fungal and bacterial
genomes (SI Appendix, Fig. S1) to normalize the DNA read
abundance, thereby approximating the number of bacterial and
fungal cells (assuming a single chromosome per cell). The esti-
mated proportions of bacterial and fungal cells were 62.1 and
37.9%, respectively (Fig. 1D). For nighttime samples, the
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Fig. 1. Taxonomic structure of microbial communities. (A) Superkingdom-level taxonomical classification of relative abundances of microbes in samples
representing the ecosystems ocean, air, soil, and human gut. (B) Number of species in samples representing the 4 corresponding ecosystems. (C) Relative
abundances of the total of metagenomic reads from 5 DVEs, assigned to taxonomic groups. (D) Estimate of bacterial versus fungal cell ratio, based on read
count normalized by genome size. (E) Relative abundances of microbes in daytime and nighttime air samples. These 2 samples were randomly selected from
the complete DVE1 dataset. (F) Number of assigned species in the corresponding daylight and night air samples.
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percentage of identifiable reads declined to only 9%, with most
of the bacterial reads being absent (Fig. 1 E and F).

Environmental Time-Series Sampling. By comparing a 330-million-
read, ultradeep air sample dataset with an independently sequenced
4-million-read dataset of the same 2-h sample (DVE1011), we de-
termined that 2 million randomly subsampled reads were sufficient
to identify and rank the 500 most abundant taxa from airborne
communities (SI Appendix, Figs. S2–S5). This observation, together
with the minimal biomass requirements, led to a sampling design for
the environmental time series DVE2 to 5 with 2-h sampling inter-
vals and 12 time points per d.
Statistical analysis was performed for DVE1 to 5 individually.

Of the randomly selected 2 million reads of each sequenced air
sample, on average 12.16 (DVE1, pilot), 10.30 (DVE2), 12.46
(DVE3), 11.66 (DVE4), and 8.25% (DVE5) were taxonomically
identified, with the majority belonging to bacterial or fungal taxa
(for details, refer to SI Appendix, Table S2). Our analysis of the
metagenomics data allowed for taxonomic identification down to
the species level (SI Appendix, Fig. S6, including blank samples in
SI Appendix, Fig. S7). Of the microbial species identified in each
time series (DVE1 to 5), 725 were detectable throughout the
13-mo sampling period and therefore are considered the core
microbiome of the airborne community. In contrast, only between
74 and 206 species were unique to a specific time series (Fig. 2A
and SI Appendix, Table S3).
The average richness of the tropical air microbial community

(assessed by the number of identifiable species) throughout
DVE2 to 5 was found to vary prominently over the course of a
day (Fig. 2B and SI Appendix, Fig. S8; RANOSIM = 0.62 to 0.81,
PANOSIM < 0.001; ANOSIM, analysis of similarities), while the
day-to-day and month-to-month average variation displayed an
unexpectedly small fluctuation (Fig. 2 C and D and SI Appen-
dix, Fig. S8; RANOSIM = 0.01 to 0.12, PANOSIM = 0.002 to 0.28).
The recurrent diel changes of the air microbial community
were sufficiently reproducible within 24 h to allow for a single

air sample to be traced back to the actual time of day it was
collected. However, it is not possible to assign a sample to a
specific month/season using our data as reference.
Despite achieving species-level taxonomic resolution, we

summarized the temporal variability of airborne organisms in
7 taxonomic groups (Fig. 3A) in order to show the general
applicability to each taxonomic group. Plant-associated reads
were collapsed at the level of Viridiplantae, fungi at the 2 tax-
onomic levels of Ascomycota and Basidiomycota, and bacteria
at the levels of Cyanobacteria, Firmicutes, Proteobacteria, and
Actinobacteria. Within the allocated taxonomic groups, plant and
bacterial phyla had similar diel dynamics to their relative abun-
dances (Fig. 3A), for example, more frequent during daytime
(midday), with only traces detected during nighttime. In contrast,
Basidiomycota were the only taxonomic group whose abundance
was high during the night and diminished during the daytime hours
(Fig. 3A). The abundance of Ascomycota, on the other hand,
predominantly increased during midday or in correlation with rain
events. These patterns were observed in all 5 DVEs and were
statistically significant (SI Appendix, Table S5; Wilcoxon signed-
rank test and regression modeling analysis).
The community richness (observed number of species) of

Ascomycota increased ∼4-fold at noon when air temperature and
solar radiation reached their maximum, while the Basidiomycota
community structure was remarkably stable over a 24-h period
(Fig. 3B). The richness of Viridiplantae changed 2- to 3-fold, being
greatest at noontime. Of the aforementioned 4 groups of bacteria,
the richness of Firmicutes and Proteobacteria communities in-
creased up to 10-fold at noon, while Cyanobacteria and Actino-
bacteria communities were more stable over the course of a day,
with less than a 5-fold increase (Fig. 3B). Corresponding alpha-
diversity values of the microbial communities throughout DVE2
to 5 are presented in SI Appendix, Fig. S9.

Day and Night Biomass Fluctuations. In the time series DVE2 to 5,
the total sampled biomass was consistently higher during night
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hours (19:00 to 07:00), as approximated by DNA amount
extracted per 2-h interval (Fig. 4A). The DNA amounts varied
between 5 and 500 ng (per 72 m3 sampled), resulting in up to a
100-fold difference between the early morning hours (05:00)
and solar noon (13:00) (e.g., DVE2). This diel effect continued
to exist during the dry seasons, but the DNA amount declined
∼30-fold to 5 to 150 ng (e.g., DVE3 and 4). Such oscillations
within 24 h are also apparent in the pairwise Bray–Curtis
similarity analysis among consecutive samples and the periodic
oscillation component extracted after applying single-spectrum
analysis (Fig. 4B).
The significant differences in DNA yield per daytime–night-

time pair were confirmed for DVE2 to 5 using the Wilcox test
(DVE2: P = 7.24 × 10−10; DVE3: P = 3.98 × 10−6; DVE4: P =
4.98 × 10−7; DVE5: P = 4.63 × 10−5). Multivariate association
analysis confirmed that time of sampling within the day had a
stronger effect on microbial community composition than the day
on which the sampling was performed (SI Appendix, Table S4).
The affiliation with a specific sampling time increased in statistical

significance when a binary trait corresponding to “day” and “night”
was assumed (SI Appendix, Table S4). Species that significantly
oscillate in the course of a day are listed in SI Appendix, Table S6.
Microbial community structure (Fig. 4 C and D) was also more
dispersed during the light hours as opposed to a consistent dark-
hour community composition (P = 0.001 for analysis of multivar-
iate homogeneity of group dispersions in DVE2, DVE3, and
DVE5, though less significant in DVE4: P = 0.14). There were at
least 3 times more bacterial reads during daytime compared with
nighttime (SI Appendix, Table S7).
To reconcile differences between whole-genome sequencing

data used for qualitative analysis and quantitative comparative
analysis in this study, we also undertook quantitative PCR analysis.
Primers for the 16S and internal transcribed spacer (ITS) regions
were used to quantify absolute abundances of bacterial and fungal
OTUs, respectively. The comparative analysis showed congruence
of relative and absolute species abundances for bacterial taxa but
not for fungal organisms due to database and amplification biases
(see below and SI Appendix, Fig. S10).
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Responses to Changing Environmental Parameters. In addition to
diel variation, airborne microorganisms responded to changing
physical and chemical parameters of air such as temperature, CO2,
and rain (metadata for DVE2 to 5 are plotted in SI Appendix, Fig.
S11A). In Singapore, the daily temperature cycle is usually con-
sistent, with a minimum temperature of ∼26 °C at night and a
maximum of ∼35 °C during the day (SI Appendix, Fig. S11A).
Relative humidity varies from ∼50% during late afternoon to
∼90% at the end of the night. The general pattern of high hu-
midity during nighttime and lower humidity during daytime hours
is also observed when the absolute humidity is calculated for each
time point (SI Appendix, Fig. S11A). SI Appendix, Table S8 shows
the interdependency of temperature and relative humidity, also
known as saturation water vapor pressure. The diel cycle of CO2 in
the near-ground–level atmosphere is largely the result of plant
respiration and varies from 400 ppm during the night to 460 ppm
during the day (SI Appendix, Fig. S11A). Contrasting windy con-
ditions were recorded during the daytime of DVE3, resulting in an
environmental parameter that clearly differentiated it from the
other time-series surveys (SI Appendix, Fig. S11).
Of all meteorological factors, temperature appears to have the

greatest impact on microbial communities in the air (Fig. 5A),

followed by CO2 levels (Fig. 5B). Increasing air temperature is
positively correlated with a higher abundance of bacterial taxa
and Ascomycota, while fungal taxa of Basidiomycota exhibit a
negative correlation (Fig. 5C). This observation is supported by
strong statistical correlations (Pearson’s R > 0.75 or <−0.75).
Particularly in DVE2, the abnormal temperature patterns during
the second night and fourth day of the sampling event were re-
markably mirrored by the pattern of abundance of several micro-
bial taxa (Fig. 5C). Notably, positive correlations with temperature
increases were seen for all bacterial phyla, while a negative cor-
relation was typically observed only for Basidiomycota fungal
species of the Agaricomycetes class (e.g., Heterobasidion irregulare,
Moniliophthora roreri, Auricularia delicata, Tulasnella calospora).
These observations were robust throughout the time series
(DVE2 to 5) (see also SI Appendix, Table S9), and supported by
highly significant associations obtained through regression mod-
eling (SI Appendix, Table S10).
In addition, a consistently strong correlation and significant

association were detected between CO2 levels and abundance of
Agaricomycetes, mainly represented by the species A. delicata
(DVE2: R = 0.59; DVE3: R = 0.59; DVE4: R = 0.82; DVE5: R =
0.66) and Rhizoctonia solani (DVE2: R = 0.67; DVE3: R = 0.59;
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the airborne microbial communities in DVE2 to 5. (C ) Areas of the 2 groups of samples representing day (7:00 to 19:00, orange circles) and night
(19:00 to 7:00, blue triangles) on the first 2 principal coordinate (PCo1 and PCo2) axes. (D) Box plots of the distances to centroid for each group are
indicated. P values for the permutation-based test of multivariate homogeneity of group dispersions (PERMDISP2) are shown. Unfilled circles repre-
sent outliers.

Gusareva et al. PNAS | November 12, 2019 | vol. 116 | no. 46 | 23303

M
IC
RO

BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 T

ex
as

 A
 &

 M
 U

ni
ve

rs
ity

 L
ib

ra
rie

s 
on

 J
an

ua
ry

 1
3,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental


DVE4: R = 0.84; DVE5: R = 0.68) (Fig. 5D and SI Appendix,
Table S10). Similarly, Actinomycetospora chiangmaiensis increased
in abundance during rain in DVE2 (R = 0.93), while the Pezizo-
mycotina fungi Diaporthe ampelina (R = 0.80) and Pseudocerco-
spora fijiensis (R = 0.88) increased during rain events in DVE3.
The other Pezizomycotina fungus, Eutypa lata, was consistently
observed to increase in abundance either directly after a rain event
(cross-correlation function [CCF] modeling analysis: DVE2: R =
0.84, t −1; DVE4: R = 0.76, t −1; DVE5: R = 0.72, t −1) or during
rain events in DVE3 (R = 0.81) (SI Appendix, Fig. S12). Similar be-
havior was observed for another Pezizomycotina fungus, D. ampelina
(CCF modeling analysis: DVE2: R = 0.94, t −10; DVE3: R =
0.78, t −1; DVE4: R = 0.82, t −1; DVE5: R = 0.53, t −1) (SI
Appendix, Fig. S12).

Modeling. Bayesian network analysis (BNA) was applied to in-
vestigate the combined effect of multiple observed environ-
mental variables. The above-identified environmental parameters
impacting the abundance of airborne microorganisms were mod-
eled in a BNA (20) (Fig. 6). This was conducted in addition to the
statistical analysis and underlines the congruence of environmental
parameter oscillations and the dynamics of the microbial commu-
nities. Furthermore, the BNAmodel assesses several scenarios that
capture a “typical day” in a tropical climate. These include a “high-
temperature scenario” (scenario A), a “low-temperature scenario”
(scenario B), as well as an “intense rain scenario” (scenario C),
which describe the effects of rapid temperature drops and high
humidity caused by local thunderstorms. The BNA model there-
fore constructs and visualizes a network of probabilistic interac-

tions between various environmental factors and relative
abundances of taxonomic groups (for a more detailed de-
scription, see SI Appendix).

Airborne Particle Distribution and Environmental Pollutants. Differ-
ent morphologies and sizes of biotic and abiotic particles were
visualized using light and scanning electron microscopy (SI Ap-
pendix, Fig. S13). The particles and microbial cells appear dis-
persed and not physically attached to a substratum (SI Appendix,
Fig. S13A). Furthermore, no strong correlation between various
particle sizes was evident, as observed by optical particle counts
(OPCs) (SI Appendix, Fig. S14) and the total amount of collected
biomass (e.g., total extracted DNA yield) (SI Appendix, Table
S11). There was also no correlation between particle size and
the abundance of the 7 taxonomical groups described above (SI
Appendix, Table S12). A combination of fluorescence and light
microscopy indicated a significant fraction of particles repre-
sented abiotic matter (SI Appendix, Figs. S13 B–D). In addition,
multicellular organisms, as well as single-celled organisms with
1 or more nuclei, were identified (SI Appendix, Fig. S13B). Some
of these appeared to have been imaged during the dikaryotic
stage in the fungal life cycle of Ascomycota and Basidiomycota
(SI Appendix, Fig. S13B). We also monitored the hourly concen-
tration of environmental pollutants, such as NOx (nitric oxides)
and SOx (sulfur oxides), in relationship to the reported fluctuations
in biomass and taxonomic distribution. However, both chemicals
could be excluded as drivers for the diel cycle of airborne micro-
organisms (SI Appendix, Figs. S15 and S16).

B
D

V
E

3:
 A

ug
 2

8 
–

S
ep

t 2
D

V
E

2:
 M

ay
 8

-1
3

D
V

E
4:

 D
ec

 4
 –

9
D

V
E

5:
 F

eb
 1

9 
-2

4

# 
of

 o
bs

er
ve

d 
sp

ec
ie

s

0
10

0
20

0
30

0
40

0
50

0

24 26 28 30 32 34 36

0
10

0
20

0
30

0
40

0
50

0

Temperature (oC)

0
10

0
20

0
30

0
40

0
50

0
0

10
0

20
0

30
0

40
0

50
0

R(Pearson’s) = 0.73

R(Pearson’s) = 0.88

R(Pearson’s) = 0.64

R(Pearson’s) = 0.78

400 420 440 460 480

10
0

20
0

30
0

40
0

50
0

CO2

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

R(Pearson’s) = -0.54

R(Pearson’s) = -0.62

R(Pearson’s) = -0.52

R(Pearson’s) = -0.56

A

25

30

35

40

Te
m

pe
ra

tu
re

 (°
C

)

DVE3: Aug 28 – Sept 2DVE2: May 8-13 DVE4: Dec 4 – 9 DVE5: Feb 19 - 24

0

1000

2000

3000

4000

0

1000

2000

3000

4000

5000

Gemmatimonadetes bacterium KBS708

Sphingomonas astaxanthinifaciens

Pyrinomonas methylaliphatogenes

Belnapia moabensis

Singulisphaera acidiphila

Rubellimicrobium mesophilum

uncultured bacterium

Truepera radiovictrix

Cylindrobasidium torrendii

Tulasnella calospora

Piriformospora indica

Sphaerobolus stellatus

Auricularia delicata

Moniliophthora roreri

Lentinula edodes

Moniliophthora perniciosa

Heterobasidion irregulare

negative correlation

positive correlation

# 
of

 a
ss

ig
ne

d 
re

ad
s

# 
of

 a
ss

ig
ne

d 
re

ad
s

C

400

420

440

460

480

C
O

2 
(p

pm
)

DVE3: Aug 28 – Sept 2DVE2: May 8-13 DVE4: Dec 4 – 9 DVE5: Feb 19 - 24

0

1000

2000

3000

4000

5000
positive correlation

Rhizoctonia solani

Auricularia delicata

# 
of

 a
ss

ig
ne

d 
re

ad
s

D

Time

Fig. 5. Diel changes of airborne fungi and bacteria in response to environmental factors. (A and B) Plotting species richness (number of observed species or
chao1 index) against temperature (A) and CO2 (B) at a particular time point of sampling. The red line is a regression line (chao1 ∼ temperature). Orange and blue
dots correspond to day and night time points, respectively. Pearson’s correlation indices between the chao1 index and temperature/CO2 are indicated. (C)
Temperature. Eight microbial species are observed to vary their abundances, as represented by read counts, in response to temperature changes. The majority of
the species responding positively to temperature are bacteria. Nine fungal species of the airborne community respond negatively. (D) Carbon dioxide. Two fungal
species respond to diel changes in CO2. The observed fluctuations caused by both environmental factors are highly correlated (Pearson’s R > 0.75 or <−0.75).

23304 | www.pnas.org/cgi/doi/10.1073/pnas.1908493116 Gusareva et al.

D
ow

nl
oa

de
d 

at
 T

ex
as

 A
 &

 M
 U

ni
ve

rs
ity

 L
ib

ra
rie

s 
on

 J
an

ua
ry

 1
3,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908493116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1908493116


Discussion
Metagenomics analysis of air samples is technically challenging
due to the low amount of obtainable biomass and has therefore
previously been restricted to long sampling time intervals, large
volumes of air (21–23), and amplification-based approaches us-
ing gene markers (24–27). The composition of airborne micro-
organisms was previously assumed to vary continuously due to
changes in meteorological, spatial, and temporal factors (9, 25,
28–31). However, sampling across 5 environmental time series in
the tropics, spanning up to 13 mo, resulted in a highly robust set
of 725 core taxa. Considering the rate of airflow and the op-
posing direction of monsoon winds across the tropical seasons,

the observed robustness of the tropical airborne microbial
community was unexpected, particularly when compared with
reports from temperate climates (9, 28, 32, 33). A large variation
in microbial composition, however, was observed between day
and night samples, while the day-to-day and month-to-month
variation was less significant (Fig. 2 and SI Appendix, Table
S7). The robust and reliable assessment of airborne community
composition with high temporal resolution enables the in-
terrogation of even ultralow biomass environments to determine
the scales and boundaries of understudied ecosystems, such as
the atmosphere. Future studies investigating the sources and
sinks of airborne microbial communities will have to consider the
large taxonomic differences encountered between day and night.
Therefore, it is important to note that consistent solar elevation
angles (true solar time) need to be considered in future horizontal
and vertical surveys, as these will govern the most relevant envi-
ronmental parameters, such as temperature and relative humidity.
The temporal distribution of >1,200 taxa reported in our meta-
genomics survey is evident from the data from the 5 environmental
time series presented here. The mechanisms behind the observed
diel biomass fluctuations are at present unknown; however, the
active release of biological particulates, such as spores, has pre-
viously been reported (34). In contrast, the removal of bioaerosols
likely involves the cessation of the active release of biological
matter in combination with dry and wet deposition. In addition,
the dynamics of bioaerosol concentrations may also be governed
by meteorological processes of the near-surface atmosphere, such
as microdroplet formation of atmospheric water.
Our in-depth taxonomical analysis of ambient tropical air

revealed a microbial diversity with similar complexity to other
well-studied ecosystems, such as seawater, soil, and the human
gut. The proportion of eukaryotic microorganisms in tropical air
was high compared with other planetary ecosystems. Of the eu-
karyotes, Basidiomycota and Ascomycota fungi were the most
abundant, while only small amounts of plant DNA were detected.
Unlike marine ecosystems, the air contained only traces of phage
and archaea. Although Ascomycota is the richest fungal phylum
in nature (35) and usually prevails in the air of temperate climate
zones (8), Basidiomycota have been reported as more abundant
in the tropics (32), despite their temporal distribution and com-
munity dynamics being previously unknown.
The observed high taxonomic diversity of the tropical air

microbiome is particularly noteworthy, as it derives from only a
fraction of the total sequence data generated. With 9% of a typical
nighttime sample and 17% of a daytime sample matching existing
sequence information, the air ecosystem appears similar in species
diversity and richness to that reported for ocean (36) and soil (37)
microbiomes. The richness of air samples exceeded 400 species
when considering a 2-h time interval and ∼1,200 species across a
single time series of 5 d.
The dynamics and long-term stability of tropical air microbial

communities are likely driven by environmental factors such as
temperature, relative humidity, rain events, solar irradiance, and
CO2 levels. These factors vary in daily repeating patterns and are
typical for global-scale tropical atmospheric air masses (e.g.,
Hadley cells) (38). Importantly, temperature was determined to
be the most important environmental parameter driving taxo-
nomic diversity of airborne communities, and it also impacts the
water vapor pressure (e.g., relative humidity) (39). Temperature
as a driver of microbial diversity was also reported in a survey of
the global marine systems (40).
The highly consistent meteorological conditions of the tropics

are ideal for studying an atmospheric near-surface ecosystem, as
evidenced by the data collection from a single location with high
temporal and taxonomic resolution, over extended periods of time.
The precise responses of airborne microbiota to fluctuations in
temperature and CO2 levels elucidate how changing physical/
environmental factors drive bioaerosol dynamics (41). However, the

Fig. 6. Network of probabilistic interactions between taxonomical groups
and environmental parameters inferred from the data. Each node represents a
variable of the system, and each edge denotes an influence of one over the
other. In addition, each node is associated with a probability table indicating
the likelihood of a variable being in a particular state in the absence of in-
formation about the system. The probability table of each node is updated
(recalculated) once information regarding the state of other nodes becomes
available. Scenario 1 models a typical midday time point when the tempera-
ture reaches its maximum. In response to high temperature, other variables are
recalculated making a new prediction (e.g., CO2 is likely to be low, while
bacteria are likely to be in high relative abundance). Low-temperature scenario
2, typical for a nighttime setting, and scenario 3, a rainfall scenario, modeling a
local meteorological event typical for the tropics.
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underlying mechanisms of the ecosystem responses are presently
understudied. Temperature, as the main determinant, affected the
prevalence of bacterial and fungal species in an opposing manner,
namely more bacteria and less fungi at higher temperatures. An-
other such example is the response to rain events by organisms
such as E. lata andD. ampelina. Changes in the abundance of these
species may be driven by responses to local sources, such as spores
being aerosolized by an active mechanism that is triggered by
changes in humidity or rainfall.
Some species responded in a consistent fashion to meteorolog-

ical changes. Gemmatimonadetes bacterium KBS708 and Sphingo-
monas astaxanthinifaciens responses indicate temperature changes,
while abundances of A. delicata and R. solani indicate increased
CO2 levels, and the abundance of E. lata was observed to be as-
sociated with rain. These changes in response to meteorological
conditions cause a several thousand-fold increase/decrease of some
microorganisms (e.g., Fig. 5) and were revealed by the high tem-
poral resolution and sensitivity of the metagenomics-based ap-
proach employed. Increases in species abundance on this scale are
unlikely to be achieved via growth over a short period of time. This
suggests that, at least for the airborne fungal microbiota described
in this study, some form of active dispersal mechanism is being
deployed, many of which have been unraveled by mycologists over
the past decades (34). In contrast, removal of biomass from air
need not rely on an active mechanism. Thus, in addition to known
means of aerosol removal from the atmosphere by dry (42) and wet
(43) deposition, for example, the washout occurring during strong
rainfall, we propose a mechanism based on the daily temperature
fluctuation in the tropics. In this regard, gaseous water forms
nanodroplets as the temperature approaches the dew point during
night hours. The formation of these nanodroplets, by aggregating
into larger droplets, could contribute to the wet deposition that
removes aerosols from the near-surface atmosphere (43). In ad-
dition, it is relevant to note that the atmospheric boundary layer
contracts during the night, which also positively contributes to an
increase in airborne biomass during the night.
Interestingly, the recorded OPC data do not suggest any

specific particle size associated with increased amounts of DNA.
Hence, the majority of sampled biomass may consist of non-
aggregated cells that do not adhere to a specific substratum. This,
in turn, would indicate that aggregation of bioaerosols is not a
major factor in the deposition process.

Summary. Our study of tropical airborne biomass revealed that
also ultralow biomass environments can now be analyzed with high
taxonomic resolution. In this regard, tropical air was demonstrated
to contain an unexpected richness and diversity of bacterial and
fungal taxa, despite only 9 to 17% of the metagenomics reads
being identifiable. The high temporal resolution of the sam-
pling approach enabled the observation that airborne microbial
communities follow a precise diel cycle, with the daily variation
of microbial diversity being much larger within a single day than
day-to-day or month-to-month. The robustness of the community
structure is underlined by 725 microbial taxa in every environ-
mental time series taken over 13 mo. The experimental approach
and analysis from this study will inform future environmental
surveys that will investigate the spatial dynamics and natural var-
iability of airborne microbial communities. Lastly, by studying the
interrelationship of microbiomes from the 3 planetary ecosystems
(atmosphere, terrestrial, and aquatic), it can now be shown that
temperature is a global driver of microbial community dynamics.

Materials and Methods
Sample Collection. All air samples were collected at an open rooftop balcony
of the School of Chemical and Biomedical Engineering at Nanyang Tech-
nological University in Singapore (GPS coordinates N1.346247, E103.679467).
The rooftop is located among buildings of similar height, ∼20 m above-
ground, with tropical forest surrounding the area from west to north of the

university campus. The sampling site is predicted to remain within the urban
boundary layer throughout the day and night. None of the sampling ac-
tivities in this study was affected by recurring polluting events such as the
Southeast Asian haze. Filter-based air samplers (SASS 3100; Research In-
ternational) were used with high flow rate, mounted with SASS bioaerosol
electret filters (Research International) with 6-cm diameter and particle re-
tention efficiency of 50% for 0.5-μm particles. All air samplers were fixed on
a tripod at 1.5-m height above the concrete floor of the balcony. Sampling
was performed at a 300 L/min airflow rate for a duration of 2 h. Upon the
completion of each sampling event, the SASS filters were transferred to filter
pouches and transported back to the laboratory for immediate processing or
storage at −20 °C for later use.

A pilot experiment was first conducted to assess the sampling and down-
stream pipeline. Triplicate air samples were collected during 5 nonconsecutive
time slots over the course of 1 d (5:00 to 7:00, 9:00 to 11:00, 12:00 to 14:00,
15:00 to 17:00, and 17:00 to 19:00). The sampling was repeated for 5 consec-
utive days from February 1 to 5, 2016 (DVE1). A total of 75 samples were
collected and processed.

In light of the pilot results, 4 sets of 24-h sampling events were conducted
from May 8 to 13 (DVE2), August 28 to September 2 (DVE3), and December
4 to 9 (DVE4) in 2016 and February 19 to 24 (DVE5) in 2017. This sam-
pling regime enabled coverage of Singapore’s 2 monsoon seasons: north-
east monsoon (December through March) and southwest monsoon (June
through September).

DVE2 to 5 were identical-by-design to DVE1, but were extended to cover
120 consecutive hours of sampling for each DVE: Bioaerosol filters were
collected and replaced every 2 h, 12 times a day, for 5 consecutive days. Three
technical replicates were collected per time point in DVE2 to 5, resulting in
180 samples for each experiment, or a combined total of 720 samples. Suc-
cessful sample processing, including DNA extraction and library preparation,
was achieved for 98.2% of all samples, leading to the following final numbers
of sequenced samples per sampling event: 173 (DVE2), 177 (DVE3), 178
(DVE4), and 179 (DVE5).

For each sampling event, filters and reagent blanks were collected, se-
quenced, and analyzed with the same protocol as the air samples in order to
assess potential contamination.

Samples for microscopy were collected using Coriolis μ samplers (Bertin
Technologies) over a period of 3 h at a flow rate of 300 L/min during
DVE4 on December 9, 5:00 to 8:00. Each Coriolis was set up at a height of
160 cm. Samples were collected in 15 mL ultrapure water, and evaporation
was mitigated with a top off-flow rate of 0.5 mL of ultrapure water per min.
A blank, 15 mL ultrapure water, was also taken and checked visually under
the microscope to ensure the absence of contamination.

Collection of Sensor Data. Sensor data were captured locally using Met ONE
HPPC 6+ to measure particle counts (size range 0.3, 0.5, 1.0, 2.0, and 5.0 μm),
Rotronic CP11 for CO2 (ppm), TSI VelociCalc Air Velocity Meter 9545 for wind
speed (m/s), temperature (°C), and relative humidity (%), and APOGEE model
MU-100 for measuring combined UVA and UVB radiation (W/m2). Rain data
were obtained from the nearby Earth Observatory of Singapore (EOS) from a
tipping bucket-type rain gauge (mm). All sensors except those at the EOS
were placed in close proximity to the SASS air samplers (0.3 to 3 m away)
under a roof to protect them from direct rain and sunlight. The rain sensors
from the EOS were located on a rooftop, ∼1 km away from the sampling site.
One instrument of each type was used for DVE1, with a redundant particle
counter added for DVE2 to 5, redundant VelociCalc and CO2 monitors added
for DVE4 and 5, and a UV monitor added for DVE2 to 5. A UV monitor was
acquired after DVE1 and was therefore only used for DVE2 to 5. Sampling
rates for CO2, particle count, and VelociCalc sensors were set to 1 min for all
DVEs with the exception of DVE4 and 5, for which the particle counter was
set to 2- and 5-min intervals, respectively. In addition, the CO2 sensor was set
to record data in 3-min sampling intervals for DVE5. UV measurements were
recorded every 30 min. Data from redundant sensors were averaged over the
2-h sampling interval with the exception of rain data, which are reported as
total (mm). Global Data Assimilation Systems datasets were acquired from
the National Oceanic and Atmospheric Administration.

DNA Extraction. Each SASS filter was first transferred to a sterile tube. PBS/
Triton X-100 (PBS-T) was used as washing buffer and added to the tube as
needed. Using sterile forceps, the SASS filter was moved up and down in the
tube a few times to ensure that the entire filter was soaked in PBS-T. After
rinsing, the filter was squeezed with forceps and the buffered solution with
washed-out particles was transferred to a sterile conical tube to complete the
first washing step. Soaking and squeezing were repeated 3 times for each
filter, using fresh PBS-T for each wash step. The combined volume of the
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3 washes was subsequently filtered through a 0.02-μm Anodisc filter
(Whatman) using a vacuum manifold (DHI). Lastly, DNA was extracted from
the Anodisc with the DNeasy PowerWater Kit (Qiagen), according to the
manufacturer’s protocol with slight modifications (44).

Metagenomics Sequencing. Extracted DNA samples were quantitated on a
Qubit 2.0 fluorometer, using the Qubit dsDNA HS (High Sensitivity) Assay Kit
(Invitrogen). Immediately prior to library preparation, sample quantitation
was repeated on a Promega QuantiFluor fluorometer, using Invitrogen’s
Picogreen assay. If the concentration of a sample determined by Qubit and
Picogreen varied by more than 10%, quantitation was repeated for a third
time using the Picogreen assay. In general, a concentration of 0.25 ng/μL and
above could be quantitated accurately with both the Qubit dsDNA HS and
the Picogreen assay. For concentrations below 0.25 ng/μL, quantitation be-
came less accurate and the Qubit tended to overestimate the concentration.
Hence, with the exception of blanks, samples with a concentration of <0.25 ng/μL
were not processed further unless absolutely necessary.

High-throughput sequencing libraries were prepared using the Swift
Biosciences Accel-NGS 2S Plus DNA Kit, following the instructions provided by
the manufacturer. DNA was sheared to ∼450 bp on either a Covaris S220 or
E220 focused ultrasonicator. All libraries were dual-barcoded with indices
from the Swift Biosciences 2S Dual Indexing Kit.

Library quantitation was performed using Invitrogen’s Picogreen assay
and the average library size was determined on a Bioanalyzer DNA 7500 chip
(Agilent). Library concentrations were normalized to 4 nM and the con-
centration was validated by qPCR on a ViiA-7 real-time thermocycler (Ap-
plied Biosystems) using Kapa Biosystem’s Library Quantification Kit for
Illumina Platforms. Libraries were then pooled at equal volumes and se-
quenced on Illumina HiSeq 2500 rapid runs at a final concentration of 10 to
11 pM and a read length of 251-bp paired end (Illumina HiSeq 2500 V2 rapid
sequencing chemistry).

Next-Generation Sequencing (NGS) Data Processing and Analysis. The meta-
genomics data generated for the air samples were processed for adaptor
removal and quality trimming with a Phred quality score threshold of
Q20 using Cutadapt v. 1.8.1 (45). Two million reads (250 bp) were randomly
selected from each sample as a representative set and aligned against
the NCBI nonredundant protein database downloaded on February 25,
2016 using the alignment tool RAPSearch v. 2.15 (46, 47).

Resulting alignments were imported into MEGAN v. 5.11.3, which assigns
taxon IDs based on NCBI taxonomy (19). To achieve the desired taxonomic
specificity, we used the following filtering parameters: min score 100 (bit
score), max expected 0.01 (e value), top percent 10 (top 10% of the highest
bit score), min support 25 (minimum number of reads required for taxo-
nomic assignment), lowest common ancestry (LCA) percent 100 (naive), and
min complexity 0.33 (sequence complexity). LCA for each read on the NCBI
taxonomy is assigned using MEGAN’s LCA algorithm. In instances where all
of the above filtering criteria were fulfilled, reads were assigned to various
levels of taxonomic classification ranging from domain to species. In our
study, species-level classification was only reached if at least 25 reads
uniquely aligned to a single species in the database with a bit score equiv-
alent to a 100% match on the protein level over at least 50% of the 250-bp
read. Due to limits of existing public sequence databases, some sequencing
reads did not result in meaningful alignments and were classified in the no-
hits category. Unassigned reads were categorized in instances when align-
ments were made but did not fulfill one of the filtering parameters, namely
the bit score.

Statistical Analysis of DNA Yield. Technical replicates of total DNA yields were
averaged per time point. Wilcox test was used to compare total extracted
DNA yields collected during day (7:00 to 19:00) and night (19:00 to 7:00)
time slots.

Statistical Analysis of Metagenomics Data. Thresholds for taxon identification
used for the presence/absence analysis in the Venn diagram were set at
25 reads per sample analyzed (Fig. 2A). For statistical analysis (Figs. 4 C and D
and 5) a more stringent set of criteria was applied. For each time point of
DVE2 to 5, the 3 technical replicates were averaged and only taxa which
exceeded 25 reads on average across 60 time points were included in the
subsequent statistical analysis. As a result, a lower overall number of species
was included in the downstream statistical analysis (195 for DVE1, 139 for
DVE2, 36 for DVE3, 42 for DVE4, and 176 for DVE5).

Regression modeling in R v. 3.2.3 was used to assess differences in relative
abundances of the 7 most common airborne taxa (i.e., Ascomycota, Basi-
diomycota, Cyanobacteria, Firmicutes, Proteobacteria, Actinobacteria, and

Viridiplantae) at different time slots of a sampling day (2-h time resolution)
and between day and night (12-h time resolution). Analysis of similarities was
applied to assess the significance of differences in microbial communities
between day and night, between experimental days in a single time-series
experiment, and between time-series DVE2 to 5, as implemented in the
vegan package in R. Generalized linear regression framework was used to
assess the association of sampling time and date factors with the corre-
sponding multivariate species abundance, as implemented in the mvabund
package in R (correlations between species response variables were
accounted for, while other settings were used as default). Pearson’s corre-
lations between multivariate species abundance and a number of environ-
mental factors were also estimated (e.g., temperature, millimeters of rain,
CO2, wind velocity, relative humidity). Alpha-diversity indices (chao1, Simpson
D and E ) were calculated in QIIME v. 1.8.0 (48). Bray–Curtis dissimilarity
distances among centroids for each DVE experiment were calculated with
the vegan package in R. Principal coordinate analysis was used as ordination
method. Single-spectrum analysis (SSA) was applied on the pairwise Bray–
Curtis similarities among air samples belonging to consecutive time points
(Rssa package in R v. 1.0, using default parameters and neigh 50). To com-
pare concordance of the technical replicates, similarity percentages were
calculated in Primer v. 7.0.13 (PRIMER-e).

To model existing relations of probabilistic dependence among environ-
mental variables and taxonomical groups, structural and parameter learning
of Bayesian networks was performed using the software GeNIe 2.2.2011.0.
Variables associated with taxonomical groups were discretized in 3 bins of
equal numbers of counts, while variables associated with environmental
parameters were discretized in 2 bins following the same principle. The
variable associated with the amount of rain was discretized in 2 bins cor-
responding to rain events that produced either more or less than 5mmwater.
Interactions among taxonomical groups were excluded through the in-
troduction of forbidden arcs. In addition, variables associated with tax-
onomical groups were assigned to a higher temporal tier; this prevented the
taxonomical groups from having an effect on variables assigned to a lower
(earlier) temporal tier. Structural learning was performed through the
Bayesian search algorithm (49), specifying 3 as the maximum number of
parents allowed per node. The number of iterations was set to 20, sample
size to 50, link probability to 0.1, and prior link probability to 0.0001.

Quantitative PCR. After DNA extraction, a set of selected samples was
subjected to qPCR analysis. TaqMan qPCR assays (StepOnePlus; Applied
Biosystems, Life Technologies) were carried out to quantitate the number
of bacterial, fungal, and Schizophyllum commune rRNA copies in the
samples. For this purpose, 2 sets of universal primers and probes targeting
the 341-to-806 region of the 16S rRNA gene (465 bp) for bacteria and the
18S rRNA gene (350 bp) for fungi were chosen (50, 51). In addition, a set of
primers and probes was designed for specific quantification of the fungal
species S. commune in our samples, based on its conserved 18S rRNA
gene sequence.

Primers and probes chosen for bacteria were forward primer 341F 5′-
CCTACGGGDGGCWGCA-3′, reverse primer 806R 5′-GGACTACHVGGGTMTCTAATC-
3′, and TaqMan probe 6FAM-5′-CAGCAGCCGCGGTA-3′-BBQ. To detect
fungi, forward primer FungiQuant-F 5′-GGRAAACTCACCAGGTCCAG-3′,
reverse primer FungiQuantR 5′-GSWCTATCCCCAKCACGA-3′, and TaqMan
probe FungiQuant-PrbLNA 6FAM-5′-TGGTGCATGGCCGTT-3′-BBQ were
used. The custom-designed primers and probe for S. commune detec-
tion were forward primer 5′-CGCGTCTCCGATGTGATAAT-3′, reverse primer 5′-
CTCAGTCAAGAGACGGTTAGAAG-3′, and TaqMan probe 6FAM-5′-TTCTACG-
TCGTTGACCATCTCGGG-3′-BBQ. TaqMan Fast Advanced Master Mix was
used for the qPCR run with the following conditions: denaturing step: 95 °C
for 20 s; cycling step: 35 cycles of 95 °C for 1 s and 60 °C for 20 s.

A qPCR standard of reference sequence was developed to estimate gene
copy number (GCN) in the extracted DNA solution based on the Ct values.
Bacterial 16S and fungal 18S rRNA genes were amplified using the Hifi
HotStart ReadyMix PCR Kit (Kapa Biosystems) according to the manufac-
turer’s protocol. The primers used for amplification were the same primers
as the ones used for qPCR. The purified PCR products were cloned into One
Shot TOP10 Chemically Competent E. coli using the Zero Blunt TOPO PCR
Cloning Kit (Invitrogen). Serial dilution of the plasmid DNA solution was
used to generate standard curves for qPCR, correlating the known copy
number with the corresponding Ct value. qPCR analysis results are presented
in terms of GCN per μL.

For S. commune qPCR standards, fruiting bodies of S. commune were
directly collected from the university campus using sterile utensils. The col-
lected S. commune samples were then cut and cultivated on malt extract
agar with streptomycin. After colonies had formed, a single colony was then
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chosen and isolated on separate malt extract agar. DNA was extracted from
the isolated colony using the DNeasy PowerWater DNA Kit. Species identi-
fication as S. commune was then confirmed by PCR with primers ITS4F and
ITS5R, followed by Sanger sequencing. Both our universal fungal primers
and custom-designed primers for S. commune were tested on the extracted
DNA sample (original DNA sample, prior to PCR). Both sets of primers and
probes showed proper amplification from the DNA sample (qPCR effort
with the universal bacteria primers and probes set yielded no amplification).

A dilution series of this extracted DNA was then used as the standard for the
S. commune qPCR effort.
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